
CSE 143
Lecture 8

More Stacks and Queues;

Complexity (Big-Oh)

reading: 13.1 - 13.3

slides adapted from Marty Stepp

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Stack/queue exercise

• A postfix expression is a mathematical expression but with the
operators written after the operands rather than before.

1 + 1 becomes 1 1 +

1 + 2 * 3 + 4 becomes 1 2 3 * + 4 +

– supported by many kinds of fancy calculators
– never need to use parentheses
– never need to use an = character to evaluate on a calculator

• Write a method postfixEvaluate that accepts a postfix

expression string, evaluates it, and returns the result.

– All operands are integers; legal operators are + , -, *, and /

postFixEvaluate("5 2 4 * + 7 -") returns 6

3

Postfix algorithm

• The algorithm: Use a stack

– When you see an operand, push it onto the stack.

– When you see an operator:

• pop the last two operands off of the stack.

• apply the operator to them.

• push the result onto the stack.

– When you're done, the one remaining stack element is the result.

"5 2 4 * + 7 -"

5

5

2

2

5

4

4

2

5

*

8

5

+

13

7

7

13

-

6

4

Exercise solution
// Evaluates the given prefix expression and returns its result.
// Precondition: string represents a legal postfix expression
public static int postfixEvaluate(String expression) {

Stack<Integer> s = new Stack<Integer>();
Scanner input = new Scanner(expression);
while (input.hasNext()) {

if (input.hasNextInt()) { // an operand (integer)
s.push(input.nextInt());

} else { // an operator
String operator = input.next();
int operand2 = s.pop();
int operand1 = s.pop();
if (operator.equals("+")) {

s.push(operand1 + operand2);
} else if (operator.equals("-")) {

s.push(operand1 - operand2);
} else if (operator.equals("*")) {

s.push(operand1 * operand2);
} else {

s.push(operand1 / operand2);
}

}
}
return s.pop();

}

5

Stack/queue motivation

• Sometimes it is good to have a collection that is less powerful,
but is optimized to perform certain operations very quickly.

• Stacks and queues do few things, but they do them efficiently.

stack

queue

top 3

2

bottom 1

pop, peekpush

front back

1 2 3
addremove, peek

6

Runtime Efficiency (13.2)

• efficiency: A measure of the use of computing resources by code.

– can be relative to speed (time), memory (space), etc.

– most commonly refers to run time

• Assume the following:

– Any single Java statement takes the same amount of time to run.

– A method call's runtime is measured by the total of the
statements inside the method's body.

– A loop's runtime, if the loop repeats N times, is N times the
runtime of the statements in its body.

7

Efficiency examples

statement1;
statement2;
statement3;

for (int i = 1; i <= N; i++) {

statement4;
}

for (int i = 1; i <= N; i++) {

statement5;
statement6;
statement7;

}

3

N

3N

4N + 3

8

Efficiency examples 2

for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {

statement1;
}

}

for (int i = 1; i <= N; i++) {

statement2;
statement3;
statement4;
statement5;

}

• How many statements will execute if N = 10? If N = 1000?

N2 + 4N

N2

4N

9

Algorithm growth rates (13.2)

• We measure runtime in proportion to the input data size, N.

– growth rate: Change in runtime as N changes.

• Say an algorithm runs 0.4N3 + 25N2 + 8N + 17 statements.

– Consider the runtime when N is extremely large .

– We ignore constants like 25 because they are tiny next to N.

– The highest-order term (N3) dominates the overall runtime.

– We say that this algorithm runs "on the order of" N3.

– or O(N3) for short ("Big-Oh of N cubed")

10

Complexity classes

• complexity class: A category of algorithm efficiency based on
the algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example

constant O(1) unchanged 10ms

logarithmic O(log2 N) increases slightly 175ms

linear O(N) doubles 3.2 sec

log-linear O(N log2

N)
slightly more than doubles 6 sec

quadratic O(N2) quadruples 1 min 42 sec

cubic O(N3) multiplies by 8 55 min

...

exponential O(2N) multiplies drastically 5 * 1061

years

11

Collection efficiency

Method ArrayList SortedIntList Stack Queue

add (or push)

add(index, value) - -

indexOf

get - -

remove

set - -

size

• Efficiency of various operations on different collections:

Method ArrayList SortedIntList Stack Queue

add (or push) O(1) O(N) O(1) O(1)

add(index, value) O(N) - -

indexOf O(N) O(?) - -

get O(1) O(1) - -

remove O(N) O(N) O(1) O(1)

set O(1) O(1) - -

size O(1) O(1) O(1) O(1)

12

Binary search (13.1, 13.3)

• binary search successively eliminates half of the elements.

– Algorithm: Examine the middle element of the array.

• If it is too big, eliminate the right half of the array and repeat.

• If it is too small, eliminate the left half of the array and repeat.

• Else it is the value we're searching for, so stop.

– Which indexes does the algorithm examine to find value 22?

– What is the runtime complexity class of binary search?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

value -4 -1 0 2 3 5 6 8 11 14 22 29 31 37 56

13

Binary search runtime

• For an array of size N, it eliminates ½ until 1 element remains.

N, N/2, N/4, N/8, ..., 4, 2, 1

– How many divisions does it take?

• Think of it from the other direction:

– How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N

– Call this number of multiplications "x".

2x = N

x = log2 N

• Binary search is in the logarithmic complexity class.

14

Range algorithm

What complexity class is this algorithm? Can it be improved?

// returns the range of values in the given array;

// the difference between elements furthest apart

// example: range({17, 29, 11, 4, 20, 8}) is 25

public static int range(int[] numbers) {

int maxDiff = 0; // look at each pair of values

for (int i = 0; i < numbers.length; i++) {

for (int j = 0; j < numbers.length; j++) {

int diff = Math.abs(numbers[j] – numbers[i]);

if (diff > maxDiff) {

maxDiff = diff;

}

}

}

return diff;

}

15

Range algorithm 2

The last algorithm is O(N2). A slightly better version:

// returns the range of values in the given array;

// the difference between elements furthest apart

// example: range({17, 29, 11, 4, 20, 8}) is 25

public static int range(int[] numbers) {

int maxDiff = 0; // look at each pair of values

for (int i = 0; i < numbers.length; i++) {

for (int j = i + 1; j < numbers.length; j++) {

int diff = Math.abs(numbers[j] – numbers[i]);

if (diff > maxDiff) {

maxDiff = diff;

}

}

}

return diff;

}

16

Range algorithm 3

This final version is O(N). It runs MUCH faster:

// returns the range of values in the given array;

// example: range({17, 29, 11, 4, 20, 8}) is 25

public static int range(int[] numbers) {

int max = numbers[0]; // find max/min values

int min = max;

for (int i = 1; i < numbers.length; i++) {

if (numbers[i] < min) {

min = numbers[i];

}

if (numbers[i] > max) {

max = numbers[i];

}

}

return max - min;

}

17

Runtime of first 2 versions

• Version 1:

• Version 2:

18

Runtime of 3rd version

• Version 3:

