
CSE 143
Lecture 6

interfaces; eclipse; testing

slides adapted from Marty Stepp

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Interfaces (9.5)

• interface: A list of methods that a class can promise to implement.

– Inheritance gives you an is-a relationship and code sharing.

• A Lawyer can be treated as an Employee and inherits its code.

– Interfaces give you an is-a relationship without code sharing.

• A Rectangle object can be treated as a Shape but inherits no code.

– Analogous to non-programming idea of roles or certifications:

• "I'm certified as a CPA accountant.
This assures you I know how to do taxes, audits, and consulting."

• "I'm 'certified' as a Shape, because I implement the Shape interface.
This assures you I know how to compute my area and perimeter."

3

Interface syntax

public interface name {

public type name(type name, ..., type name);
public type name(type name, ..., type name);
...
public type name(type name, ..., type name);

}

Example:
public interface Vehicle {

public int getSpeed();

public void setDirection(int direction);

}

4

Interface syntax

public class name implements interface name{

...
}

Example:
public class Car implements Vehicle {

…

public int getSpeed() {

return speed;

}

public void setDirection(int direction) {

this.direction = direction;

}

}

5

Writing testing programs

• Some programs are written specifically to test other programs.

• If we wrote ArrayIntList and want to give it to others, we

must make sure it works adequately well first.

• Write a client program with a main method that constructs

several lists, adds elements to them, and calls the various other
methods.

6

Tips for testing

• You cannot test every possible input, parameter value, etc.

– Even a single (int) method has 2^32 different possible values!

– So you must think of a limited set of tests likely to expose bugs.

• Think about boundary cases

– positive, zero, negative numbers

– right at the edge of an array or collection's size

• Think about empty cases and error cases

– 0, -1, null; an empty list or array

– an array or collection that contains null elements

• Write helping methods in your test program to shorten it.

7

More testing tips

• Focus on expected vs. actual behavior

• the test shouldn't just call methods and print results; it should:

– call the method(s)

– compare their results to a known correct expected value

– if they are the same, report that the test "passed"

– if they differ, report that the test "failed" along with the values

• test behavior in combination

– maybe add usually works, but fails after you call remove

– what happens if I call add then size? remove then toString?

– make multiple calls; maybe size fails the second time only

8

Example ArrayIntList test

public static void main(String[] args) {

int[] a1 = {5, 2, 7, 8, 4};

int[] a2 = {2, 7, 42, 8};

int[] a3 = {7, 42, 42};

helper(a1, a2);

helper(a2, a3);

helper(new int[] {1, 2, 3, 4, 5}, new int[] {2, 3, 42, 4});

}

public static void helper(int[] elements, int[] expected) {

ArrayIntList list = new ArrayIntList(elements);

for (int i = 0; i < elements.length; i++) {

list.add(elements[i];

}

list.remove(0);

list.remove(list.size() - 1);

list.add(2, 42);

for (int i = 0; i < expected.length; i++) {

if (list.get(i) != expected[i]) {

System.out.println("fail; expect " + Arrays.toString(expected)

+ ", actual " + list);

}

}

}

