
CSE 143
Lecture 2

More ArrayList; classes and objects

reading: 10.1; 8.1 - 8.7

slides adapted from Marty Stepp and Hélène Martin

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Words exercise, revisited

• Write a program that reads a file and
displays the words of that file as a list.

– Then display the words in reverse order.

– Then display them with all plural words removed.

3

Exercise solution (partial)

ArrayList<String> allWords = new ArrayList<String>();

Scanner input = new Scanner(new File("words.txt"));

while (input.hasNext()) {

String word = input.next();

allWords.add(word);

}

// display in reverse order

for (int i = allWords.size() - 1; i >= 0; i--) {

System.out.println(allWords.get(i));

}

// remove all plural words

for (int i = 0; i < allWords.size(); i++) {

String word = allWords.get(i);

if (word.endsWith("s")) {

allWords.remove(i);

i--;

}

}

4

ArrayList of primitives?

• The type you specify when creating an ArrayList must be an

object/class type; it cannot be a primitive type.

// illegal; int cannot be a type parameter

ArrayList<int> list = new ArrayList<int>();

• But we can still use ArrayList with primitive types by using

special classes called wrapper classes in their place.

// legal; creates a list of ints

ArrayList<Integer> list = new ArrayList<Integer>();

5

Wrapper classes

• A wrapper is an object whose sole purpose is to hold a primitive value.

• Once you construct the list, use it with primitives as normal:

ArrayList<Double> grades = new ArrayList<Double>();

grades.add(3.2);

grades.add(2.7);

...

double myGrade = grades.get(0);

Primitive Type Wrapper Type

int Integer

double Double

char Character

boolean Boolean

10

Classes and objects

• class: A program entity that represents:

– A complete program or module, or

– A template for a type of objects.

– (ArrayList is a class that defines a type.)

• object: An entity that combines state and behavior.

– object-oriented programming (OOP): Programs that perform

their behavior as interactions between objects.

– abstraction: Separation between concepts and details.

Objects provide abstraction in programming.

12

BankAccount exercise

• Suppose we have a class BankAccount with the methods:

public BankAccount(String name, int id)

public void deposit(double amount)

public void withdraw(double amount)

public double getBalance()

public int getID()

• Make each account keep a log of all its transactions.

– Desired: a printLog method that shows all transactions so far.

Deposit of $7.82

Withdrawal of $2.55

Deposit of $6.18

13

Objects storing collections

• An object can have an array, list, or other collection as a field.

public class Course {

private double[] grades;

private ArrayList<String> studentNames;

public Course() {

grades = new double[4];

studentNames = new ArrayList<String>();

...

}

• Now each object stores a collection of data inside it.

