
CSE 143, Autumn 2013
Programming Assignment #2: SortedIntList (40 points)

Due Thursday, October 10, 2013, 11:30 PM

For your second programming assignment you are to write a class called SortedIntList that is a variation of

the ArrayIntList class discussed in lecture. Turn in two files named SortedIntList.java and
SortedIntListTest.java on the Homework section of the course web site

For this assignment you are to write a class called SortedIntList that is a variation of the ArrayIntList

class written in lecture. Your class has two primary differences from the original list:

 A SortedIntList must maintain its list of integers in sorted order (non-decreasing).

 A SortedIntList has an option to specify that its elements should be unique (no duplicates).

The new class should have the same public methods as the old class except for the two-parameter add method

that adds a value at a particular index and the set method. Because we want to keep the list in sorted order, we

won’t allow the client to specify where something should go, so these methods should not be public methods of

the new class.

Two of the methods should be rewritten. The single-parameter add method should no longer add at the end of the

list. It should add the value in an appropriate place to keep the list in sorted (non-decreasing) order. The add

method also has to pay attention to whether the client has requested “unique” values, in which case it has to be

careful not to add any duplicates to the list. Your add method should not re-sort the entire list (either by

calling Arrays.sort or something you wrote yourself). Finding the correct position and inserting the new

element at that position is more efficient than resorting the whole list.

In addition, the indexOf method should be rewritten to take advantage of the fact that the list is sorted. It should

use the much faster binary search algorithm rather than the sequential search algorithm that is used in the

original ArrayIntList class (more on this later). We will also slightly change

the postcondition of indexOf. The ArrayIntList version promises to return the index of the first occurrence

of the search value. Because we are using a binary search, we will instead guarantee only that the index is

for an occurrence of the search value (not necessarily the first one).

The other methods from ArrayIntList like the remove method can be used without modification in the new

class. You should comment each method in your class. If you borrow the comments from

the ArrayIntList class, then be sure to comment the new methods in a similar manner.

Your new class will have an extra piece of state information. Each SortedIntList will keep track of whether

or not it is limited to unique values. Think of it as a sort of on/off switch that each list has. If the unique switch is

set to off (false), then the list adds everything, even if that leads to duplicate values. If the unique switch is set to

on (true), then calls on add that pass values already in the list have no effect (i.e., add ensures that no duplicates

are added). For example, if you start with an empty list that has the unique switch off, then adding three

occurrences of the number 42 will generate the list [42, 42, 42]. Adding those same three occurrences of 42 to an

empty list that has the unique switch on will generate the list [42].

This extra piece of state will require the addition of several new methods. Your class should keep the

DEFAULT_CAPACITY constant and should have a total of four constructors:

Method Description

SortedIntList(boolean unique, int capacity) This should construct a list with given capacity and with

the given setting for whether or not to limit the list to

unique values (true means no duplicates, false means

duplicates are allowed). If the capacity is negative, an
IllegalArgumentException should occur.

SortedIntList(int capacity) This should construct a list with the given capacity and

with unique set to false (duplicates allowed). If the

capacity is negative, an IllegalArgumentException
should occur.

SortedIntList(boolean unique) This should construct a list of default capacity with the

given setting for unique (true means no duplicates, false

means duplicates are allowed)

SortedIntList() This should construct a list of default capacity with unique

set to false (duplicates allowed)

Your class should include the following four new methods:

Method Description

int min() This method should return the smallest element value contained in the

list. For example, in the list [4, 4, 17, 39, 58], the min is 4. If the list is

empty, it has no minimum element, so you should throw a
NoSuchElementException.

int max() This method should return the largest element value contained in the list.

For example, in the list [4, 4, 17, 39, 58], the max is 58. If the list is

empty, it has no largest element, so you should throw a
NoSuchElementException.

boolean getUnique() This method should return the current setting for unique (true means no

duplicates, false means duplicates are allowed)

void setUnique(boolean value) This method allows the client to set whether or not to allow duplicates

(true means no duplicates, false means duplicates allowed)

The setUnique method presents a potential problem for us. Suppose that the client has constructed a list and has

added many values, including duplicates. If the client then tries to set unique to true, this is supposed to prevent

duplicates. But the duplicates are already there. In this case, the setUnique method should remove the

duplicates and should guarantee that no additional duplicates are added unless the client changes the setting back

to false. If the client changes the setting back to false, that will mean that duplicates can then be added, but this

doesn’t have to behave like an “undo” operation that would put back duplicates that you previously removed.

You are required to use the built-in Arrays.binarySearch method discussed in section for all of your location

testing (Where is a value? Where would I insert a new value?). You can find the documentation for it in the Java

API documentation that is the first link under “Links” on the class web page. Keep in mind that because this is a

static method, you have to use the class name in calling it. For example, to find the location of the value 42 in an

array called data when we want to explore the first twelve elements, you’d say something like:

int index = Arrays.binarySearch(data, 0, 12, 42);

Remember that the “from index” is inclusive, which is why we use 0, and the “to index” is exclusive, which is

why we use 12.

To get access to the Arrays class, you should include this line at the beginning of your class:

import java.util.*;

Testing Program (SortedIntListTest.java):

Along with your SortedIntList, turn in a short testing file named SortedIntListTest.java. This

program should test your implementation of SortedIntList by creating at least two lists, adding some elements

to them, calling various methods, and checking the expected results. This part of the assignment is worth only a

few points, but we want you to practice testing your own code. For full credit, your testing file must contain at

least 2 test methods, and you must call at least 3 of the different methods on the list(s) you create.

There are also several provided testing programs on the course web site. You may ask, "Why do I need to write

my own testing program when these testing programs are already provided?" Our testing programs are large and

complex. It can be good to have a smaller test that runs just a few methods that you are working on. We

encourage you to add to this program as you develop your SortedIntList. If you want to write a more

complex test, that is fine, but not required.

Development Strategy
One of the most important techniques for software professionals is to develop code in stages rather than trying to

write it all at once (the technical term is iterative enhancement or stepwise refinement). It is also important to be

able to test the correctness of your solution at each different stage.

We have noticed that many 143 students do not develop their code in stages and do not have a good idea of how

to test their solutions. As a result, for this assignment we will provide you with a development strategy and some

testing code. We aren’t going to provide exhaustive testing code, but we’ll give you some good examples of the

kind of testing code we want you to write.

We are suggesting that you develop the program in three stages:

1. For this version, we won’t worry about the issue of unique values. We just want a basic version of the

class that keeps a list in sorted order and that uses binary search to speed up searching. This stage

involves all of the following (not necessarily in this order):

a. Copy ArrayIntList.java to SortedIntList.java and change all occurrences

of ArrayIntList to SortedIntList. That way you’ll have a new class that has the same

behavior as the old ArrayIntList class (including the two constructors).

b. Make sure that the two-argument add method is no longer a public method.

c. Modify the one-argument add method so that it preserves sorted order. You may need to use

binary search if your solution involves two steps (first locate, then insert).

d. Modify indexOf so that it uses the binary search method.

e. Add the min and max methods.

2. Modify your code so that it keeps track of whether or not the client wants you to guarantee that the list has

unique values. Add the two constructors that involve setting unique and modify add so that it doesn’t

add duplicates if unique is set to true.

3. Modify your code to have getUnique and setUnique. Remember that if the client

calls setUnique and sets the value to true, you have to eliminate any duplicates that might be in the list.

References

Textbook Chapter 15 covers the implementation of ArrayIntList in detail.

Textbook sections 13.1 and 13.3 discuss the binary search algorithm in more detail. 13.3 discusses how it is

implemented and its return values in detail. Seeing how it is implemented may help you understand how to use it

appropriately.

Style Guidelines and Grading

You may not use any features from Java's collection framework on this assignment, such as ArrayList or other

pre-existing collection classes. You also may not use the Arrays.sort method to sort your list.

A major focus of our style grading is redundancy. As much as possible you should avoid redundancy and

repeated logic within your code, such as by factoring out common code from if/else statements, creating

"helper" methods to capture repeated code, or having some of your methods/constructors call others if their

behaviors are related. Any additional methods you add to SortedIntList beyond those specified should be

private so that outside code cannot call them. Note that even constructors can be redundant; if two or more

constructors in your class (or the superclass) contain similar or identical code, you should find a way to reduce

this redundancy by making them call each other as appropriate.

Properly encapsulate your objects by making any data fields in your class private. Avoid unnecessary fields;

use fields to store important data of your objects but not to store temporary values only used within a single call to

one method. Fields should always be initialized inside a constructor or method, never at declaration.

You should follow good general style guidelines such as: appropriately using control structures like loops and

if/else statements; avoiding redundancy using techniques such as methods, loops, and if/else factoring;

properly using indentation, good variable names, and proper types; and not having any lines of code longer than

100 characters.

Commenting will be more of a style focus on this program (and future programs) than it was in 142. You should

comment your code with a heading at the top of your class with your name, section, and a description of the

overall program. Also place a comment heading atop each method, and a comment on any complex sections of

your code.

Not only will we look for the existence of comments on this assignment, but we also have stricter expectations

about the quality of their content. Comment headings should use descriptive complete sentences and should be

written in your own words, explaining each method's behavior, parameters, return values, and pre/post-conditions

as appropriate. If the method potentially throws any exceptions, comment this and explain what exceptions it

throws and under what conditions it will throw them. Be concise but specific in your comments. The

ArrayIntList class is a good example of appropriate commenting style for this assignment. (Your test program

should have an overall descriptive comment header at the top of the class, but it does not need commenting on

each testing method or otherwise throughout the code.)

For reference, our SortedIntList.java is around 175 lines long including comments (and has 80

"substantive" lines according to our Indenter tool on the course web site). But you do not have to match this; it's

just listed as a sanity check.

