
MapReduce,
Dictionaries, List
Comprehensions

Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.
Except where otherwise noted, this work is licensed under:

http://creativecommons.org/licenses/by-nc-sa/3.0

2

Why didn't NaN == NaN?

Last time we found that

float(“nan”) == float(“nan”) is False

NaN is “nothing”, does not equal anything, even itself.

To find out if a value is NaN you have to use isnan

>>> n = float("nan")
>>> from math import *

>>> isnan(n)
True

3

MapReduce

Framework for processing huge datasets on certain
kinds of distributable problems

Map Step:
- master node takes the input, chops it up

into smaller sub-problems, and
distributes those to worker nodes.

- worker node may chop its work into yet
small pieces and redistribute again

4

MapReduce

Framework for processing huge datasets on certain
kinds of distributable problems

Map Step:
- master node takes the input, chops it up

into smaller sub-problems, and
distributes those to worker nodes.

- worker node may chop its work into yet
small pieces and redistribute again

5

MapReduce

Reduce Step:
- master node then takes the answers to

all the sub-problems and combines them in a
way to get the output

6

MapReduce

Problem: Given an email how do you tell if it is
spam?

- Count occurrences of certain words. If they
 occur too frequently the email is spam.

7

MapReduce

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

 email = ['the', 'this', 'annoy', 'the', 'the', 'annoy']
>>> def inEmail (x):
 if (x == "the"):
 return 1;
 else:
 return 0;

>>> map (inEmail, l)
[1, 0, 0, 0, 1, 1, 0]

>>> reduce ((lambda x, xs: x + xs), map(inEmail, email))
3

8

Stack

• Information found here:
• http://docs.python.org/py3k/library/stdty

pes.html
• Really easy!
• Use lists to simulate a stack
• .append(value) in order to “push”

onto the stack
• .pop() in order to ‘pop’ off the stack.
• Check this example out!

9

Queue

• Really easy too!!!!
• Use lists to simulate a queue
• .insert(0, value) in order to ‘add’ to

the queue.
• .pop() in order to ‘remove’ off from

the queue.
• Why does this work? What do insert

and pop really do?

10

Queue

• Ok… this is dumb… and inefficient.
• Using lists, we get O(N), but…..
• from collections import deque
• queue = deque([‘blah’, ‘blah’, ‘blah’])
• Use append() to ‘add’ to the queue
• Use popleft() to ‘remove’ from the

queue
• This works in O(1)!

• Sweeeeeeeeet.

11

Dictionary
• Equivalent to Java’s Map.
• Stores keys and values.
• Empty dictionary is defined by:

• m = {}

• Pre-populated dictionary: (Map<String, String>)
• (mapping names to SCII division…)
• m2 = { ‘jordan’ : ‘master’, ‘roy’ : ‘bronze’, ‘marty’ :

‘bronze’ }

• Add to dictionary:
• m2[‘IMMVP’] = ‘master’

• Retrieve from dictionary
• m2[‘jordan’] # ‘master’

12

Dictionary
• How to get keySet()

• map.keys()
• Uh oh……. We get something called dict_keys…
• We should cast to a list.

• list(map.keys())

• How to check if a key is contained in a dictionary…
• ‘marty’ in m # returns true bc ‘marty’ is in

dictionary
• ‘bronze’ in m # returns false bc ‘bronze’ is not a

key

• How to delete
• del m[‘marty’]

• Get values with: m.values()
• Note that you get the dict_values. So cast to a list.

13

Set

• s = { ‘GLaDOS’, ‘Cloud’, ‘Aeris’, ‘Shepard’, ‘Cloud’,
‘Aeris’ }
• # {‘GLaDOS’, ‘Cloud’, “Aeris’, ‘Shepard’ }

• Removed duplicates

• s2 = set(‘hello I am soooo happy!!!’)
• Creates a set out of all the characters
• The stuff in the blue must be iterable.

• i.e. lists, tuples, etc…

• Check for contains is same as dictionary.
• ‘GLaDOS’ in s

14

Set

• Tons of extra functionality
• Check for subsets, see if set A is contained in set B
• Go here to see more: (under 5.7)

• http://docs.python.org/py3k/library/stdtypes.html#set.iss
ubset

15

List Comprehensions

 [expression for element in list]

• Applies the expression to each element in
the list

• You can have 0 or more for or if statements
• If the expression evaluates to a tuple it must

be in parenthesis

16

List Comprehensions

1
2
3
4
5
6
7
8
9
10
11
12
13
14

>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
 [6, 12, 18]

>>> [3*x for x in vec if x > 3]
 [12, 18]

>>> [3*x for x in vec if x < 2]
 []

>>> [[x,x**2] for x in range(10)]
 [[0, 0], [1, 1], [2, 4], [3, 9]]

>>> [x, x**2 for x in vec]
 # error - parens required for tuples

17

List Comprehensions
You can do most things that you can do with map, filter
and reduce more nicely with list comprehensions

How can we find out how many times ‘a’ appears in the
list named email?

1
2
3
4
5
6

>>> email = ['once', 'upon', 'a', 'time', 'in', 'a',
'far', 'away']

>>> len([1 for x in email if x == 'a'])

>>> 2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

