
CSE 143
Lecture 19

Binary Search Trees

read 17.3 - 17.4

slides created by Marty Stepp and Hélène Martin

http://www.cs.washington.edu/143/

2

Binary search trees

• binary search tree ("BST"): a binary tree where each non-
empty node R has the following properties:
– every element of R's left subtree contains data "less than" R's data,

– every element of R's right subtree contains data "greater than" R's,

– R's left and right subtrees are also binary search trees.

• BSTs store their elements in
sorted order, which is helpful
for searching/sorting tasks.

9160

8729

55

42-3

overall root

3

BST examples

• Which of the trees shown are legal binary search trees?

xk

qg

m

e

b 1810

115

8

4

2 7

20

18

42

-7-1

-5

21.38.1

9.61.9

7.2

4

Searching a BST

• Describe an algorithm for searching a binary search tree.

– Try searching for the value 31, then 6.

• What is the maximum
number of nodes you
would need to examine
to perform any search? 12

18

7

4 15

overall root

-2 1613

35

31

22 58

19 8740

5

Exercise

• Convert the IntTree class into a SearchTree class.

– The elements of the tree will constitute a legal binary search tree.

• Modify contains to take advantage of the BST structure.

•tree.contains(29) → true

•tree.contains(55) → true

•tree.contains(63) → false

•tree.contains(35) → false

9160

8729

55

42-3

overall root

6

Exercise solution

// Returns whether this BST contains the given integer.

public boolean contains(int value) {

return contains(overallRoot, value);

}

private boolean contains(IntTreeNode node, int value) {

if (node == null) {

return false; // base case: not found here

} else if (node.data == value) {

return true; // base case: found here

} else if (node.data > value) {
return contains(node.left, value);

} else { // root.data < value

return contains(node.right, value);
}

}

7

Adding to a BST

• Suppose we want to add new values to the BST below.

– Where should the value 14 be added?

– Where should 3 be added? 7?

– If the tree is empty, where
should a new value be added?

• What is the general algorithm?
1910

115

8

4

2 7

25

22

overall root

8

Adding exercise

• Draw what a binary search tree would look like if the following
values were added to an initially empty tree in this order:

50
20
75
98
80
31
150
39
23
11
77

50

20 75

80

9811

39

31

15023

77

9

Exercise

• Add a method add to the SearchTree class that adds a given
integer value to the BST.

– Add the new value in the proper place to maintain BST ordering.

•tree.add(49);

9160

8729

55

42-3

overall root

49

10

An incorrect solution

// Adds the given value to this BST in sorted order.

public void add(int value) {

add(overallRoot, value);
}

private void add(IntTreeNode node, int value) {

if (node == null) {

node = new IntTreeNode(value);

} else if (node.data > value) {

add(node.left, value);
} else if (node.data < value) {

add(node.right, value);
}

// else node.data == value, so

// it's a duplicate (don't add)

}

• Why doesn't this solution work?

9160

8729

55

42-3

overallRoot

The x = change(x)
pattern

read 17.3

12

A tangent: Change a point

• What is the state of the object referred to by p after this code?

public static void main(String[] args) {

Point p = new Point(1, 2);

change(p);

System.out.println(p);

}

public static void change(Point thePoint) {

thePoint.x = 3;
thePoint.y = 4;

}

// answer: (3, 4)

2y1xp

13

Change point, version 2

• What is the state of the object referred to by p after this code?

public static void main(String[] args) {

Point p = new Point(1, 2);

change(p);

System.out.println(p);

}

public static void change(Point thePoint) {

thePoint = new Point(3, 4);
}

// answer: (1, 2)

2y1xp

4y3x

14

Changing references

• If a method dereferences a variable (with .) and modifies the
object it refers to, that change will be seen by the caller.

public static void change(Point thePoint) {

thePoint.x = 3; // affects p

thePoint.setY(4); // affects p

• If a method reassigns a variable to refer to a new object, that
change will not affect the variable passed in by the caller.

public static void change(Point thePoint) {

thePoint = new Point(3, 4); // p unchanged

thePoint = null; // p unchanged

– What if we want to make the variable passed in become null?

15

Change point, version 3

• What is the state of the object referred to by p after this code?

public static void main(String[] args) {

Point p = new Point(1, 2);

change(p);

System.out.println(p);

}

public static Point change(Point thePoint) {

thePoint = new Point(3, 4);

return thePoint;
}

// answer: (1, 2)

2y1xp

4y3x

16

Change point, version 4

• What is the state of the object referred to by p after this code?

public static void main(String[] args) {

Point p = new Point(1, 2);

p = change(p);

System.out.println(p);

}

public static Point change(Point thePoint) {

thePoint = new Point(3, 4);

return thePoint;

}

// answer: (3, 4)

2y1xp

4y3x

17

x = change(x);

• If you want to write a method that can change the object that
a variable refers to, you must do three things:

1. pass in the original state of the object to the method

2. return the new (possibly changed) object from the method

3. re-assign the caller's variable to store the returned result

p = change(p); // in main

public static Point change(Point thePoint) {

thePoint = new Point(99, -1);

return thePoint;

• We call this general algorithmic pattern x = change(x);
– also seen with strings: s = s.toUpperCase();

18

The problem

• Much like with linked lists, if we just modify what a local
variable refers to, it won't change the collection.

private void add(IntTreeNode node, int value) {

if (node == null) {

node = new IntTreeNode(value);

}

– In the linked list case, how did we
actually modify the list?
• by changing the front

• by changing a node's next field

9160

8729

55

42-3

overallRoot

49node

19

Applying x = change(x)

• Methods that modify a tree should have the following pattern:

– input (parameter): old state of the node

– output (return): new state of the node

• In order to actually change the tree, you must reassign:

node = change(node, parameters);

node.left = change(node.left, parameters);

node.right = change(node.right, parameters);

overallRoot = change(overallRoot, parameters);

your
method

node
before

node
after

parameter return

20

A correct solution

// Adds the given value to this BST in sorted order.

public void add(int value) {

overallRoot = add(overallRoot, value);

}

private IntTreeNode add(IntTreeNode node, int value) {

if (node == null) {

node = new IntTreeNode(value);

} else if (node.data > value) {

node.left = add(node.left, value);
} else if (node.data < value) {

node.right = add(node.right, value);
} // else a duplicate; do nothing

return node;
}

9160

8729

55

42-3

overallRoot

