
CSE 143
Lecture 12

Maps/Sets; Grammars

reading: 11.2 - 11.3

slides created by Marty Stepp and Hélène Martin

http://www.cs.washington.edu/143/



2

Exercise

• Write a program that counts the number of unique words in a 
large text file (say, Moby Dick or the King James Bible).

– Store the words in a collection and report the # of unique words.

– Once you've created this collection, allow the user to search it to 
see whether various words appear in the text file.

• What collection is appropriate for this problem?



3

Sets (11.2)

• set: A collection of unique values (no duplicates allowed)
that can perform the following operations efficiently:

– add, remove, search (contains)

– We don't think of a set as having indexes; we just 
add things to the set in general and don't worry about order

set.contains("to") true

set

"the"
"of"

"from"

"to"

"she"
"you"

"him""why"

"in"

"down"

"by"

"if"

set.contains("be") false



4

Set implementation

• in Java, sets are represented by Set type in java.util

•Set is implemented by HashSet and TreeSet classes

– HashSet: implemented using a "hash table" array;
very fast: O(1) for all operations
elements are stored in unpredictable order

– TreeSet: implemented using a "binary search tree";
pretty fast: O(log N) for all operations
elements are stored in sorted order

– LinkedHashSet: O(1) but stores in order of insertion;
slightly slower than HashSet because of extra info stored



5

Set methods

List<String> list = new ArrayList<String>();
...
Set<Integer> set = new TreeSet<Integer>(); // empty

Set<String> set2 = new HashSet<String>(list);

– can construct an empty set, or one based on a given collection

removes all elements of the setclear()

returns true if the set's size is 0isEmpty()

returns true if the given value is found in this setcontains(value)

returns a string such as "[3, 42, -7, 15]"toString()

returns the number of elements in listsize()

removes the given value from the setremove(value)

adds the given value to the setadd(value)



6

The "for each" loop (7.1)

for (type name : collection) {
statements;

}

• Provides a clean syntax for looping over the elements of a Set, 
List, array, or other collection

Set<Double> grades = new HashSet<Double>();
...

for (double grade : grades) {

System.out.println("Student's grade: " + grade);

}

– needed because sets have no indexes; can't get element i



7

Exercise

• Write a program to count the number of occurrences of each 
unique word in a large text file (e.g. Moby Dick ).

– Allow the user to type a word and report how many times that 
word appeared in the book.

– Report all words that appeared in the book at least 500 times, in 
alphabetical order.

• What collection is appropriate for this problem?



8

Maps (11.3)

• map: Holds a set of unique keys and a collection of values, 
where each key is associated with one value.

– a.k.a. "dictionary", "associative array", "hash"

• basic map operations:

– put(key, value ): Adds a 
mapping from a key to
a value.

– get(key ): Retrieves the
value mapped to the key.

– remove(key ): Removes
the given key and its
mapped value. myMap.get("Juliet") returns "Capulet"



9

Map implementation

• in Java, maps are represented by Map type in java.util

•Map is implemented by the HashMap and TreeMap classes

– HashMap: implemented using an array called a "hash table";
extremely fast: O(1) ; keys are stored in unpredictable order

– TreeMap: implemented as a linked "binary tree" structure;
very fast: O(log N) ; keys are stored in sorted order

– LinkedHashMap: O(1) ; keys are stored in order of insertion

• A map requires 2 type params: one for keys, one for values.

// maps from String keys to Integer values

Map<String, Integer> votes = new HashMap<String, Integer>();



10

Map methods

returns the value mapped to the given key (null if not found)get(key)

removes all key/value pairs from the mapclear()

returns true if the map's size is 0isEmpty()

returns true if the map contains a mapping for the given keycontainsKey(key)

returns a string such as "{a=90, d=60, c=70}"toString()

returns the number of key/value pairs in the mapsize()

removes any existing mapping for the given keyremove(key)

adds a mapping from the given key to the given value;
if the key already exists, replaces its value with the given one

put(key, value)

returns true if given map has the same mappings as this oneequals(map)

adds all key/value pairs from the given map to this mapputAll(map)

returns a collection of all values in the mapvalues()

returns a set of all keys in the mapkeySet()



11

Using maps

• A map allows you to get from one half of a pair to the other.

– Remembers one piece of information about every index (key).

– Later, we can supply only the key and get back the related value:

Allows us to ask: What is Suzy's phone number?

Map

get("Suzy")

"206-685-2181"

Map

//   key      value

put("Suzy", "206-685-2181")



12

Maps and tallying

• a map can be thought of as generalization of a tallying array
– the "index" (key) doesn't have to be an int

– count digits: 22092310907

// (M)cCain, (O)bama, (I)ndependent
– count votes: "MOOOOOOMMMMMOOOOOOMOMMIMOMMIMOMMIO"

index 0 1 2 3 4 5 6 7 8 9

value 3 1 3 0 0 0 0 1 0 2

key "M" "O" "I"

value 16 14 3

"M"

"O"

"I" 16

3

14

keys values



13

keySet and values

•keySet method returns a Set of all keys in the map

– can loop over the keys in a foreach loop

– can get each key's associated value by calling get on the map

Map<String, Integer> ages = new TreeMap<String, Integer>();

ages.put("Marty", 19);

ages.put("Geneva", 2);  // ages.keySet() returns Set<String>
ages.put("Vicki", 57);

for (String name : ages.keySet()) {           // Geneva -> 2
int age = ages.get(name);                 // Marty -> 19
System.out.println(name + " -> " + age);  // Vicki -> 57

}

•values method returns a collection of all values in the map

– can loop over the values in a foreach loop

– no easy way to get from a value to its associated key(s)



Languages and Grammars



15

Languages and grammars

• (formal) language: A set of words or symbols.

• grammar: A description of a language that describes which 
sequences of symbols are allowed in that language.

– describes language syntax (rules) but not semantics (meaning)

– can be used to generate strings from a language, or to determine
whether a given string belongs to a given language



16

Backus-Naur (BNF)

• Backus-Naur Form (BNF): A syntax for describing language 
grammars in terms of transformation rules, of the form:

<symbol> ::= <expression> | <expression> ... | <expression>

– terminal: A fundamental symbol of the language.

– non-terminal: A high-level symbol describing language syntax, 
which can be transformed into other non-terminal or terminal 
symbol(s) based on the rules of the grammar.

– developed by two Turing-award-winning computer scientists in 1960 to 
describe their new ALGOL programming language



17

An example BNF grammar

<s>::=<n> <v>

<n>::=Marty | Victoria | Stuart | Jessica

<v>::=cried | slept | belched

• Some sentences that could be generated from this grammar:

Marty slept

Jessica belched

Stuart cried



18

BNF grammar version 2

<s>::=<np> <v>

<np>::=<pn> | <dp> <n>

<pn>::=Marty | Victoria | Stuart | Jessica

<dp>::=a | the

<n>::=ball | hamster | carrot | computer

<v>::=cried | slept | belched

• Some sentences that could be generated from this grammar:

the carrot cried

Jessica belched

a computer slept



19

BNF grammar version 3

<s>::=<np> <v>

<np>::=<pn> | <dp> <adj> <n>

<pn>::=Marty | Victoria | Stuart | Jessica

<dp>::=a | the

<adj>::=silly | invisible | loud | romantic

<n>::=ball | hamster | carrot | computer

<v>::=cried | slept | belched

• Some sentences that could be generated from this grammar:

the invisible carrot cried

Jessica belched

a computer slept

a romantic ball belched



20

Grammars and recursion

<s>::=<np> <v>

<np>::=<pn> | <dp> <adjp> <n>

<pn>::=Marty | Victoria | Stuart | Jessica

<dp>::=a | the

<adjp>::=<adj> <adjp> | <adj>

<adj>::=silly | invisible | loud | romantic

<n>::=ball | hamster | carrot | computer

<v>::=cried | slept | belched

• Grammar rules can be defined recursively, so that the 
expansion of a symbol can contain that same symbol.

– There must also be expressions that expand the symbol into 
something non-recursive, so that the recursion eventually ends.



21

Grammar, final version

<s>::=<np> <vp>

<np>::=<dp> <adjp> <n>|<pn>

<dp>::=the|a

<adjp>::=<adj>|<adj> <adjp>

<adj>::=big|fat|green|wonderful|faulty|subliminal

<n>::=dog|cat|man|university|father|mother|child

<pn>::=John|Jane|Sally|Spot|Fred|Elmo

<vp>::=<tv> <np>|<iv>

<tv>::=hit|honored|kissed|helped

<iv>::=died|collapsed|laughed|wept

• Could this grammar generate the following sentences?
Fred honored the green wonderful child

big Jane wept the fat man fat

• Generate a random sentence using this grammar.



22

Sentence generation

<s>

<np> <vp>

<pn>

Fred

<tv> <np>

honored

<dp> <adjp> <n>

the

<adjp><adj>

childgreen

<adj>

wonderful


