
CSE 143
Lecture 7

References and Linked Nodes

reading: 16.1

slides created by Marty Stepp and Hélène Martin

http://www.cs.washington.edu/143/

2

• Complexity class of various operations on collections:

– Which operations are fast, and which are slow?

– Could we build lists differently to optimize other operations?

Collection efficiency

-

-

SortedIntList

-

-

-

StackArrayList QueueMethod

size

-set

remove

-get

indexOf

-add(index, value)

add (or push)

-

O(1)

O(N)

O(1)

O(log N)

O(N)

SortedIntList

O(1)

-

O(1)

-

-

-

O(1)

Stack

O(1)

O(1)

O(N)

O(1)

O(N)

O(N)

O(1)

ArrayList QueueMethod

O(1)size

-set

O(1)remove

-get

-indexOf

-add(index, value)

O(1)add (or push)

3

Array vs. linked structure

• All collections in this course use one of the following:

– an array of all elements
• examples: ArrayList, Stack, HashSet, HashMap

– linked objects storing one element and references to other(s)
• examples: LinkedList, TreeSet, TreeMap

• This week we will learn how to create a linked list.

• To understand linked lists, we must understand references.

917-342

front 42 -3 17 null9

4

A swap method?

• Does the following swap method work? Why or why not?

public static void main(String[] args) {

int a = 7;

int b = 35;

// swap a with b

swap(a, b);

System.out.println(a + " " + b);

}

public static void swap(int a, int b) {

int temp = a;

a = b;

b = temp;

}

5

Value semantics

• value semantics: Behavior where values are copied when

assigned to each other or passed as parameters.

– When one primitive is assigned to another, its value is copied.

– Modifying the value of one variable does not affect others.

int x = 5;

int y = x; // x = 5, y = 5

y = 17; // x = 5, y = 17

x = 8; // x = 8, y = 17

6

Reference semantics

• reference semantics: Behavior where variables actually store
the address of an object in memory.

– When one reference variable is assigned to another, the object is
not copied; both variables refer to the same object.

int[] a1 = {4, 5, 2, 12, 14, 14, 9};

int[] a2 = a1; // refers to same array as a1

a2[0] = 7;

System.out.println(a1[0]); // 7

9141412254value

6543210index

9141412257value

6543210indexa1

a2

7

References and objects

• In Java, objects and arrays use reference semantics. Why?

– efficiency. Copying large objects slows down a program.

– sharing. It's useful to share an object's data among methods.

DrawingPanel panel1 = new DrawingPanel(80, 50);

DrawingPanel panel2 = panel1; // same window

panel2.setBackground(Color.CYAN);

panel1

panel2

8

References as fields

• Objects can store references to other objects as fields.

Example: Homework 3 (HTML Validator)

– HtmlValidator stores a reference to a Queue

– the Queue stores many references to HtmlTag objects

– each HtmlTag object stores a reference to its element String

private Queue<HtmlTag> tags;
...

HtmlValidator

back.........frontQueue

private String element;
...

HtmlTag

private String element;
...

HtmlTag

lmthString
ydobString

9

Null references

•null : A value that does not refer to any object.

– The elements of an array of objects are initialized to null.

String[] words = new String[5];

– not the same as the empty string "" or the string "null"

– Why does Java have null ? What is it used for?

nullnullnullnullnullvalue

43210index

words

10

Null references

– Unset reference fields of an object are initialized to null.

public class Student {

String name;

int id;

}

Student timmy = new Student();

nullname

timmy 0id

11

Things you can do w/ null

• store null in a variable or an array element
String s = null;

words[2] = null;

• print a null reference
System.out.println(timmy.name); // null

• ask whether a variable or array element is null
if (timmy.name == null) { ... // true

• pass null as a parameter to a method

– some methods don't like null parameters and throw exceptions

• return null from a method (often to indicate failure)

return null;

12

Dereferencing

• dereference: To access data or methods of an object.
– Done with the dot notation, such as s.length()

– When you use a . after an object variable, Java goes to the
memory for that object and looks up the field/method requested.

Student timmy = new Student();

timmy.name = "Timmah";

String s = timmy.name.toUpperCase();

nullname
timmy

0id

'm' 'a' 'h''m''i''T'

Student String

public int indexOf(String s) {...}

public int length() {...}

public String toUpperCase() {...}

13

Null pointer exception

• It is illegal to dereference null (it causes an exception).

– null does not refer to any object, so it has no methods or data.

Student timmy = new Student();

String s = timmy.name.toUpperCase(); // ERROR

Output:
Exception in thread "main"

java.lang.NullPointerException

at Example.main(Example.java:8)

nullname
timmy

0id

14

References to same type

• What would happen if we had a class that declared one of its
own type as a field?

public class Strange {

private String name;

private Strange other;

}

– Will this compile?
• If so, what is the behavior of the other field? What can it do?

• If not, why not? What is the error and the reasoning behind it?

15

A list node class

public class ListNode {

int data;

ListNode next;

}

• Each list node object stores:

– one piece of integer data

– a reference to another list node

•ListNodes can be "linked" into chains to store a list of values:

42

nextdata

-3

nextdata

17

nextdata

null9

nextdata

16

List node client example

public class ConstructList1 {

public static void main(String[] args) {

ListNode list = new ListNode();

list.data = 42;

list.next = new ListNode();

list.next.data = -3;

list.next.next = new ListNode();

list.next.next.data = 17;

list.next.next.next = null;

System.out.println(list.data + " " + list.next.data

+ " " + list.next.next.data);

// 42 -3 17
}

}

42

nextdata

-3

nextdata

null17

nextdata

list

17

List node w/ constructor

public class ListNode {

int data;

ListNode next;

public ListNode(int data) {

this.data = data;

this.next = null;

}

public ListNode(int data, ListNode next) {

this.data = data;

this.next = next;

}

}

– Exercise: Modify the previous client to use these constructors.

18

Linked node problem 1

• What set of statements turns this picture:

• Into this?

10

nextdata

20

nextdata
list

10

nextdata

20

nextdata
list

30

nextdata

19

References vs. objects

variable = value;

a variable (left side of =) is an arrow (the base of an arrow)

a value (right side of =) is an object (a box; what an arrow points at)

• For the list at right:

– a.next = value;

means to adjust where points

– variable = a.next;

means to make variable point at

10

nextdata
a

20

nextdata

1

2

1

2

20

Reassigning references

• when you say:

– a.next = b.next;

• you are saying:
– "Make the variable a.next refer to the same value as b.next."

– Or, "Make a.next point to the same place that b.next points."

10

nextdata
a

20

nextdata

30

nextdata
b

40

nextdata

21

Linked node problem 2

• What set of statements turns this picture:

• Into this?

10

nextdata

20

nextdata
list

30

nextdata

10

nextdata
list

20

nextdata

22

Linked node problem 3

• What set of statements turns this picture:

• Into this?

10

nextdata

20

nextdata
list1

30

nextdata

40

nextdata
list2

10

nextdata

30

nextdata
list1

40

nextdata
list2

20

nextdata

23

Linked node problem 4

• What set of statements turns this picture:

• Into this?

10

nextdata

990

nextdata
list

...

10

nextdata

990

nextdata
list

... 1000

nextdata

