
CSE 143
Lecture 7

Stacks and Queues

reading: "Appendix Q" (see course
website)

2

Stacks and queues

• Today we will examine two specialty collections:

– stack: Retrieves elements in the reverse of the order they were added.

– queue: Retrieves elements in the same order they were added.

– Less powerful, but optimized to perform certain operations quickly.

stack

queue
1bottom

2

3top

pop, peekpush

321

backfront
addremove, peek

3

Abstract data types (ADTs)

• abstract data type (ADT): A specification of a collection of
data and the operations that can be performed on it.

– Describes what a collection does, not how it does it

• We don't know exactly how a stack or queue is implemented,
and we don't need to.

– We just need to understand the idea of the collection and what
operations it can perform.

(Stacks are usually implemented with arrays; queues are often
implemented using another structure called a linked list.)

4

Stacks

• stack: A collection based on the principle of adding elements
and retrieving them in the opposite order.

– Last-In, First-Out ("LIFO")

– Elements are stored in order of insertion.

• We do not think of them as having indexes.

– Client can only add/remove/examine
the last element added (the "top").

• basic stack operations:

– push: Add an element to the top.

– pop: Remove the top element.

– peek: Examine the top element.
stack

1bottom

2

3top

pop, peekpush

5

Stacks in computer science

• Programming languages and compilers:

– method calls are placed onto a stack (call=push, return=pop)

– compilers use stacks to evaluate expressions

• Matching up related pairs of things:

– find out whether a string is a palindrome

– examine a file to see if its braces { } match

– convert "infix" expressions to pre/postfix

• Sophisticated algorithms:

– searching through a maze with "backtracking"

– many programs use an "undo stack" of previous operations

return var
local vars
parameters

method1

return var
local vars
parameters

method2

return var
local vars
parameters

method3

6

Class Stack

Stack<Integer> s = new Stack<Integer>();

s.push(42);

s.push(-3);

s.push(17); // bottom [42, -3, 17] top

System.out.println(s.pop()); // 17

– Stack has other methods, but we forbid you to use them.

returns true if stack has no elementsisEmpty()

returns number of elements in stacksize()

returns top value from stack without removing it;
throws EmptyStackException if stack is empty

peek()

removes top value from stack and returns it;
throws EmptyStackException if stack is empty

pop()

places given value on top of stackpush(value)

constructs a new stack with elements of type EStack<E>()

7

Stack limitations/idioms

• You cannot loop over a stack in the usual way.

Stack<Integer> s = new Stack<Integer>();
...
for (int i = 0; i < s.size(); i++) {

do something with s.get(i);
}

• Instead, you pull elements out of the stack one at a time.

– common idiom: Pop each element until the stack is empty.

// process (and destroy) an entire stack

while (!s.isEmpty()) {

do something with s.pop();

}

8

Exercise

• Consider an input file of exam scores in reverse ABC order:

Yeilding Janet 87

White Steven 84

Todd Kim 52

Tashev Sylvia 95

...

• Write code to print the exam scores in ABC order using a stack.

– What if we want to further process the exams after printing?

9

What happened to my stack?

• Suppose we're asked to write a method max that accepts a

Stack of integers and returns the largest integer in the stack:

// Precondition: !s.isEmpty()
public static void max(Stack<Integer> s) {

int maxValue = s.pop();

while (!s.isEmpty()) {

int next = s.pop();

maxValue = Math.max(maxValue, next);

}

return maxValue;

}

– The algorithm is correct, but what is wrong with the code?

10

What happened to my stack?

• The code destroys the stack in figuring out its answer.

– To fix this, you must save and restore the stack's contents:

public static void max(Stack<Integer> s) {
Stack<Integer> backup = new Stack<Integer>();
int maxValue = s.pop();

backup.push(maxValue);

while (!s.isEmpty()) {
int next = s.pop();
backup.push(next);
maxValue = Math.max(maxValue, next);

}

while (!backup.isEmpty()) { // restore
s.push(backup.pop());

}
return maxValue;

}

11

Queues

• queue: Retrieves elements in the order they were added.

– First-In, First-Out ("FIFO")

– Elements are stored in order of
insertion but don't have indexes.

– Client can only add to the end of the
queue, and can only examine/remove
the front of the queue.

• basic queue operations:

– add (enqueue): Add an element to the back.

– remove (dequeue): Remove the front element.

– peek: Examine the front element.

queue

321

backfront
addremove, peek

12

Queues in computer science

• Operating systems:

– queue of print jobs to send to the printer

– queue of programs / processes to be run

– queue of network data packets to send

• Programming:

– modeling a line of customers or clients

– storing a queue of computations to be performed in order

• Real world examples:

– people on an escalator or waiting in a line

– cars at a gas station (or on an assembly line)

13

Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();
q.add(42);

q.add(-3);

q.add(17); // front [42, -3, 17] back

System.out.println(q.remove()); // 42

– IMPORTANT: When constructing a queue you must use a new
LinkedList object instead of a new Queue object.

• This has to do with a topic we'll discuss later called interfaces.

returns true if queue has no elementsisEmpty()

returns number of elements in queuesize()

returns front value from queue without removing it;
returns null if queue is empty

peek()

removes value from front of queue and returns it;
throws a NoSuchElementException if queue is empty

remove()

places given value at back of queueadd(value)

14

Queue idioms

• As with stacks, must pull contents out of queue to view them.

// process (and destroy) an entire queue

while (!q.isEmpty()) {

do something with q.remove();

}

– another idiom: Examining each element exactly once.

int size = q.size();

for (int i = 0; i < size; i++) {

do something with q.remove();

(including possibly re-adding it to the queue)
}

• Why do we need the size variable?

15

Mixing stacks and queues

• We often mix stacks and queues to achieve certain effects.

– Example: Reverse the order of the elements of a queue.

Queue<Integer> q = new LinkedList<Integer>();
q.add(1);

q.add(2);

q.add(3); // [1, 2, 3]

Stack<Integer> s = new Stack<Integer>();

while (!q.isEmpty()) { // Q -> S
s.push(q.remove());

}

while (!s.isEmpty()) { // S -> Q
q.add(s.pop());

}

System.out.println(q); // [3, 2, 1]

16

Exercise

• Modify our exam score program so that it reads the exam
scores into a queue and prints the queue.

– Next, filter out any exams where the student got a score of 100.

– Then perform your previous code of reversing and printing the
remaining students.

• What if we want to further process the exams after printing?

17

Exercises

• Write a method stutter that accepts a queue of integers as a

parameter and replaces every element of the queue with two
copies of that element.

– front [1, 2, 3] back

becomes
front [1, 1, 2, 2, 3, 3] back

• Write a method mirror that accepts a queue of strings as a

parameter and appends the queue's contents to itself in
reverse order.

– front [a, b, c] back

becomes
front [a, b, c, c, b, a] back

