CSE 143
Lecture 5

Binary search; complexity

reading: 13.1 - 13.2

slides created by Marty Stepp and Hélène Martin
http://www.cs.washington.edu/143/
Sequential search

- **sequential search**: Locates a target value in an array / list by examining each element from start to finish. Used in `indexOf`.
 - How many elements will it need to examine?
 - Example: Searching the array below for the value **42**:

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>-4</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>50</td>
<td>56</td>
<td>68</td>
<td>85</td>
<td>92</td>
<td>103</td>
</tr>
</tbody>
</table>

- Notice that the array is sorted. Could we take advantage of this?
• **binary search**: Locates a target value in a sorted array / list by successively eliminating half of the array from consideration.

 – How many elements will it need to examine?
 – Example: Searching the array below for the value 42:

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>-4</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>50</td>
<td>56</td>
<td>68</td>
<td>85</td>
<td>92</td>
<td>103</td>
</tr>
</tbody>
</table>

```plaintext
min  mid  max
```
• The `binarySearch` method in the `Arrays` class searches an array very efficiently if the array is sorted.
 – You can search the entire array, or just a range of indexes (useful for "unfilled" arrays such as the one in `ArrayIntList`)
Using `binarySearch`

```java
// index    0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15
int[] a = {-4, 2, 7, 9, 15, 19, 25, 28, 30, 36, 42, 50, 56, 68, 85, 92};
int index  = Arrays.binarySearch(a, 0, 16, 42);  // index1 is 10
int index2 = Arrays.binarySearch(a, 0, 16, 21);  // index2 is -7

• `binarySearch` returns the index where the value is found
• if the value is not found, `binarySearch` returns:
  
  -(insertionPoint + 1)

• where insertionPoint is the index where the element would have been, if it had been in the array in sorted order.
• To insert the value into the array, negate insertionPoint + 1

int indexToInsert21 = -(index2 + 1);  // 6
How much better is binary search than sequential search?

**efficiency**: A measure of the use of computing resources by code.
- can be relative to speed (time), memory (space), etc.
- most commonly refers to run time

Assume the following:
- Any single Java statement takes the same amount of time to run.
- A method call's runtime is measured by the total of the statements inside the method's body.
- A loop's runtime, if the loop repeats N times, is N times the runtime of the statements in its body.
Efficiency examples

\[
\begin{align*}
\text{statement1; } & \quad \{ \text{statement2; } \quad \{ \text{statement3; } \quad \{ 3 \} \} \} \\
& \quad \{ \text{for (int i = 1; i <= N; i++) { } } \} \} \\
& \quad \{ \text{statement4; } \} \} \\
& \quad \{ \text{N } \} \} \\
& \quad \{ \text{for (int i = 1; i <= N; i++) { } } \} \} \\
& \quad \{ \text{statement5; } \text{statement6; } \text{statement7; } \} \} \\
& \quad \{ \text{3N } \} \} \\
& \quad \{ \text{4N + 3 } \} \}
\end{align*}
\]
for (int i = 1; i <= N; i++) {
    for (int j = 1; j <= N; j++) {
        statement1;
    }
}

for (int i = 1; i <= N; i++) {
    statement2;
    statement3;
    statement4;
    statement5;
}

• How many statements will execute if $N = 10$? If $N = 1000$?
Algorithm growth rates (13.2)

- We measure runtime in proportion to the input data size, $N$.
  - **growth rate**: Change in runtime as $N$ changes.

- Say an algorithm runs $0.4N^3 + 25N^2 + 8N + 17$ statements.
  - Consider the runtime when $N$ is *extremely large*.
  - We ignore constants like 25 because they are tiny next to $N$.
  - The highest-order term ($N^3$) dominates the overall runtime.

  - We say that this algorithm runs "on the order of" $N^3$.
  - or $O(N^3)$ for short ("Big-Oh of N cubed")
Complexity classes

- **complexity class**: A category of algorithm efficiency based on the algorithm's relationship to the input size N.

<table>
<thead>
<tr>
<th>Class</th>
<th>Big-Oh</th>
<th>If you double N, ...</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>O(1)</td>
<td>unchanged</td>
<td>10ms</td>
</tr>
<tr>
<td>logarithmic</td>
<td>O(log₂ N)</td>
<td>increases slightly</td>
<td>175ms</td>
</tr>
<tr>
<td>linear</td>
<td>O(N)</td>
<td>doubles</td>
<td>3.2 sec</td>
</tr>
<tr>
<td>log-linear</td>
<td>O(N log₂ N)</td>
<td>slightly more than doubles</td>
<td>6 sec</td>
</tr>
<tr>
<td>quadratic</td>
<td>O(N²)</td>
<td>quadruples</td>
<td>1 min 42 sec</td>
</tr>
<tr>
<td>cubic</td>
<td>O(N³)</td>
<td>multiplies by 8</td>
<td>55 min</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>exponential</td>
<td>O(2^N)</td>
<td>multiplies drastically</td>
<td>5 * 10^{61} years</td>
</tr>
</tbody>
</table>
Complexity classes

Sequential search

- What is its complexity class?

```java
public int indexOf(int value) {
 for (int i = 0; i < size; i++) {
 if (elementData[i] == value) {
 return i;
 }
 }
 return -1; // not found
}
```

- On average, "only" N/2 elements are visited
  - 1/2 is a constant that can be ignored
### Collection efficiency

- Efficiency of our ArrayIntList or Java's ArrayList:

<table>
<thead>
<tr>
<th>Method</th>
<th>ArrayList</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add</code></td>
<td>O(1)</td>
</tr>
<tr>
<td><code>add(index, value)</code></td>
<td>O(N)</td>
</tr>
<tr>
<td><code>indexOf</code></td>
<td>O(N)</td>
</tr>
<tr>
<td><code>get</code></td>
<td>O(1)</td>
</tr>
<tr>
<td><code>remove</code></td>
<td>O(N)</td>
</tr>
<tr>
<td><code>set</code></td>
<td>O(1)</td>
</tr>
<tr>
<td><code>size</code></td>
<td>O(1)</td>
</tr>
</tbody>
</table>
Binary search

- **binary search** successively eliminates half of the elements.
  - *Algorithm:* Examine the middle element of the array.
    - If it is too big, eliminate the right half of the array and repeat.
    - If it is too small, eliminate the left half of the array and repeat.
    - Else it is the value we're searching for, so stop.

- Which indexes does the algorithm examine to find value **42**?
- What is the runtime complexity class of binary search?

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>-4</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>50</td>
<td>56</td>
<td>68</td>
<td>85</td>
<td>92</td>
<td>103</td>
</tr>
</tbody>
</table>

- min
- mid
- max
Binary search runtime

• For an array of size $N$, it eliminates $\frac{1}{2}$ until 1 element remains.
  \[ N, \frac{N}{2}, \frac{N}{4}, \frac{N}{8}, ..., 4, 2, 1 \]
  – How many divisions does it take?

• Think of it from the other direction:
  – How many times do I have to multiply by 2 to reach $N$?
    \[ 1, 2, 4, 8, ..., \frac{N}{4}, \frac{N}{2}, N \]
  – Call this number of multiplications "$x$".
    \[ 2^x = N \]
    \[ x = \log_2 N \]

• Binary search is in the **logarithmic** complexity class.
Max subsequence sum

• Write a method `maxSum` to find the largest sum of any contiguous subsequence in an array of integers.
  – Easy for all positives: include the whole array.
  – What if there are negatives?

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>2</td>
<td>1</td>
<td>-4</td>
<td>10</td>
<td>15</td>
<td>-2</td>
<td>22</td>
<td>-8</td>
<td>5</td>
</tr>
</tbody>
</table>

Largest sum: $10 + 15 + -2 + 22 = 45$

– (Let's define the max to be 0 if the array is entirely negative.)

• Ideas for algorithms?
Algorithm 1 pseudocode

maxSum(a):

max = 0.

for each starting index i:
    for each ending index j:
        sum = add the elements from a[i] to a[j].
        if sum > max,
            max = sum.

return max.

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>2</td>
<td>1</td>
<td>-4</td>
<td>10</td>
<td>15</td>
<td>-2</td>
<td>22</td>
<td>-8</td>
<td>5</td>
</tr>
</tbody>
</table>
• What complexity class is this algorithm?
  – $O(N^3)$. Takes a few seconds to process 2000 elements.

```java
public static int maxSum1(int[] a) {
 int max = 0;
 for (int i = 0; i < a.length; i++) {
 for (int j = i; j < a.length; j++) {
 // sum = add the elements from a[i] to a[j].
 int sum = 0;
 for (int k = i; k <= j; k++) {
 sum += a[k];
 }
 if (sum > max) {
 max = sum;
 }
 }
 }
 return max;
}
```
Flaws in algorithm 1

- Observation: We are redundantly re-computing sums.
  - For example, we compute the sum between indexes 2 and 5:
  - Next we compute the sum between indexes 2 and 6:
  - We already had computed the sum of 2-5, but we compute it again as part of the 2-6 computation.
  - Let's write an improved version that avoids this flaw.
• What complexity class is this algorithm?
  – $O(N^2)$. Can process tens of thousands of elements per second.

```java
public static int maxSum2(int[] a) {
 int max = 0;
 for (int i = 0; i < a.length; i++) {
 int sum = 0;
 for (int j = i; j < a.length; j++) {
 sum += a[j];
 if (sum > max) {
 max = sum;
 }
 }
 }
 return max;
}
```
A clever solution

- **Claim 1**: A max range cannot start with a negative-sum range.

  
  \[
  \begin{array}{cccc}
  i & \ldots & j & j+1 & \ldots & k \\
  \hline
  < 0 & & & \text{sum}(j+1, k) \\
  \text{sum}(i, k) < \text{sum}(j+1, k) \\
  \end{array}
  \]

- **Claim 2**: If \( \text{sum}(i, j-1) \geq 0 \) and \( \text{sum}(i, j) < 0 \), any max range that ends at \( j+1 \) or higher cannot start at any of \( i \) through \( j \).

  
  \[
  \begin{array}{cccc}
  i & \ldots & j-1 & j & j+1 & \ldots & k \\
  \hline
  \geq 0 & < 0 & & \text{sum}(j+1, k) \\
  < 0 & & \text{sum}(j+1, k) \\
  \text{sum}(?, k) < \text{sum}(j+1, k) \\
  \end{array}
  \]

- Together, these observations lead to a very clever algorithm...
• What complexity class is this algorithm?
  – \textbf{O}(N). Handles many millions of elements per second!

```java
public static int maxSum3(int[] a) {
 int max = 0;
 int sum = 0;
 int i = 0;
 for (int j = 0; j < a.length; j++) {
 if (sum < 0) {
 // if sum becomes negative, max range
 i = j;
 // cannot start with any of i - j-1
 sum = 0; // (Claim 2)
 }
 sum += list[j];
 if (sum > max) {
 max = sum;
 }
 }
 return max;
}
```