
1 of 4

CSE 143, Winter 2012
Programming Assignment #2: SortedIntList (40 points)

Due Thursday, January 19, 2012, 11:30 PM
This program focuses on implementing a collection. Turn in two files named SortedIntList.java and
SortedIntListTest.java from the Homework section of the course web site.
For this assignment you are to write a class called SortedIntList that is a variation of the ArrayIntList class
written in lecture. Your class has two primary differences from the original list:

• A SortedIntList must maintain its list of integers in sorted order (non-decreasing).
• A SortedIntList has an option to specify that its elements should be unique (no duplicates).

The new class should have the same public methods as ArrayIntList except for the two-parameter add method that
adds a value at a particular index. Because we want to keep the list in sorted order, we don’t want to give clients the
ability to decide where to insert a value, so this method should not be a public method of the new class. Some of the
common methods between the two classes will need to be implemented differently in SortedIntList: add and
indexOf. You will also add two constructors and the getUnique, setUnique, max, min and count methods.
SortedIntList should have the following public interface:
public SortedIntList() constructs an empty list of a default capacity, allowing duplicates
public SortedIntList(boolean unique) constructs empty list of default capacity and given "unique" setting
public SortedIntList(int capacity) constructs an empty list with given capacity, allowing duplicates
public SortedIntList(
 boolean unique, int capacity)

constructs an empty list with given capacity and "unique" setting

public void add(int value) possibly adds given value to list, maintaining sorted order
public void remove(int index) removes value at given index, shifting subsequent values left
public int get(int index) returns the element at the given index
public int size() returns the number of elements in the list
public boolean isEmpty() returns true if the list doesn’t contain any elements
public int indexOf(int value) same behavior as before, but optimized; see next page
public int max() returns the maximum integer value stored in the list

(throws a NoSuchElementException if the list is empty)
public int min() returns the minimum integer value stored in the list

(throws a NoSuchElementException if the list is empty)
public int count(int value) returns the number of times the given value is in the list
public boolean getUnique() returns whether only unique values are allowed in the list
public void setUnique(boolean unique) sets whether only unique values are allowed in the list; if set to

true, immediately removes any existing duplicates from the list
public String toString() returns a string version of the list, such as "[4, 5, 17]"

Your class will have a field to keep track of whether or not it is limited to unique values. The value can be set by your
second constructor or by calling setUnique. Think of it as an on/off switch for duplicates that each list has.

2 of 4

Implementation Details:
public SortedIntList()
This constructor should initialize a list of default capacity (10) with uniqueness set to false (duplicates allowed).
public SortedIntList(boolean unique)
This constructor should initialize a list of default capacity (10) with uniqueness set to the given value.
public SortedIntList(int capacity)
This constructor should initialize a list with the given capacity and with uniqueness set to false (duplicates allowed). If
the capacity is negative, an IllegalArgumentException should occur.
public SortedIntList(boolean unique, int capacity)
This constructor should initialize a list with the given capacity and with the given setting for whether or not to limit the
list to unique values (true means no duplicates, false means duplicates are allowed). See get/setUnique below. If
the capacity is negative, an IllegalArgumentException should occur.

public void add(int value)
Your single-argument add method should ensure a sorted list. You should no longer add at the end of the list; instead you
should add the value at an appropriate place to keep the list in sorted order. For example, if the list is [-3, 7, 18, 42] and
the user adds 27, afterward the list should contain [-3, 7, 18, 27, 42] in that order. (See indexOf.)
The add method has to pay attention to whether the client has requested unique values only. If so, your method must not
allow any element to be added if that value is already in the list. You should not re-sort the entire list every time an
element is added. Finding the correct index and inserting the element there is more efficient than re-sorting the whole list.

public boolean getUnique()
This method should return the current uniqueness setting (true means no duplicates, false means duplicates allowed).
public void setUnique(boolean unique)
Allows client to set whether to allow duplicates in the list (true means no duplicates, false means duplicates allowed).
If the unique switch is set to off (false), the list allows any integer to be added, even if that integer is already found in
the list (a duplicate). If the unique switch is on (true), any call to add that passes a value already in the list has no effect.
In other words, when the unique switch is true, the add method should not allow any duplicates to be added to the list.
For example, if you start with an empty list that has the unique switch off, adding three 42s will generate the list [42, 42,
42]. But if your list has the unique switch on, adding those same three 42s would generate the single-element list [42].
If the client sets unique to true when the list has duplicates, setUnique should remove all duplicates and ensure that
no future duplicates can be added unless the client sets unique back to false. If the client changes the unique setting to
false, the list elements do not immediately change, but it will mean that duplicates could be added in the future.

public int max()
public int min()
These methods should return the largest and smallest element values contained in the list, respectively. For example, in
the list [4, 4, 17, 39, 58], the max is 58 and the min is 4. If the list is empty, it has no largest or smallest element, so you
should throw a NoSuchElementException.

public int count(int value)
This method returns the number of times the given value is in the list. If the list contains the values [-3, 1, 2, 2, 2, 5, 6],
the call count(2) returns 3 because there are 3 occurrences of 2. Take advantage of the fact that the list is sorted. You
should not traverse the entire list looking for elements equal to the parameter. Finding an occurrence of the value using
binary search and counting elements of the same value around it is more efficient (see indexOf).
Note that binary search may not give you the index of the first occurrence of the value. For example, if the list were to
contain [-3, 1, 2, 2, 2, 5, 6], searching for the number 2 would give the index 3 which is in the middle of a group of 2s.
Your method will need to count occurrences of the value to both the left and right of the index given by binary search.
If the value is not in the list, your method should return 0.

3 of 4

public int indexOf(int value)
This method should take advantage of the fact that the list is sorted and use the faster binary search algorithm. If the
element is found in the list, return its position. The element may occur in the list multiple times; if so, return any index at
which that element value appears. If the element is not found, return -1.
Use the built-in Arrays.binarySearch method for all index location searching ("Where is a value currently located?"
"Where should I insert a new value?"). You can find its documentation in the Java API from the Links section of the
course web site. For example, to search indexes 0-16 of an array called data for values 42 and 66, you could write:
// index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
int[] data = {-4, 2, 7, 10, 15, 20, 22, 25, 30, 36, 42, 50, 56, 68, 85, 92, 103, 0, 0};
int index1 = Arrays.binarySearch(data, 0, 17, 42); // index1 is 10
int index2 = Arrays.binarySearch(data, 0, 17, 66); // index2 is -14

When Arrays.binarySearch is unable to find a value in the list, it returns a negative number one less than the index at
which the value would have been found if it had been in the array (sometimes called the "insertion point"). For
example, in the example above the value 66 is not found, but if it had been in the list, it would have been at index 13;
therefore the search returns -14. You should take advantage of this information when adding new elements to your list.
To get access to the Arrays class, you should import java.util.*; at the beginning of your class.

Testing Program (SortedIntListTest.java):
Along with your SortedIntList, turn in a short testing file named SortedIntListTest.java. This program should
test your implementation of SortedIntList by creating at least two lists, adding some elements to them, calling various
methods, and checking the expected results. This part of the assignment is worth only a few points, but we want you to
practice testing your own code. For full credit, your testing file must generate at least 5 lines of output, and you must call
at least 3 of the different methods on the list(s) you create.
There are also several provided testing programs on the course web site. You may ask, "Why do I need to write my own
testing program when these testing programs are already provided?" Our testing programs are large and complex. It can
be good to have a smaller test that runs just a few methods that you are working on. We encourage you to add to this
program as you develop your SortedIntList. If you want to write a more complex test, that is fine, but not required.

Development Strategy:
We suggest that you develop the program in the following three stages:

1. Write a first version that always allows duplicates and doesn't worry at all about the issue of unique values. Just
keep your list in sorted order and use binary search to speed up searching. This stage involves the following:

a. Create your class file and the overall class header. You may want to start with a copy of the
ArrayIntList code.

b. Write the constructors.
c. Make sure the two-argument add is not a public method.
d. Modify the single-argument add method so that it preserves sorted order. You will need to use binary

search here if your solution involves two steps (first locate, then insert).
e. Modify indexOf so that it uses the binary search method; also write max, min and count.

2. Modify your code so it keeps track of whether the client wants only unique values. Add any state necessary and
modify constructor(s) as needed. Next modify add so that it doesn't add duplicates if the unique setting is true.

3. Write the getUnique and setUnique methods. Remember that if the client calls setUnique and sets the value
to true, you must remove any duplicates currently in the list.

We will provide testing code for each of these 3 stages. For this program only, you are allowed to discuss how to write
testing code with other students. Keep in mind that our tests are not guaranteed to be exhaustive and we do not guarantee
full credit for passing the provided tests. Use them as examples of the kind of testing code we want you to write. You
will want to do a lot of simpler testing before you try running any of these high-powered tests.

4 of 4

References:
Textbook Chapter 15 covers the implementation of ArrayIntList in detail.
Textbook sections 13.1 and 13.3 discuss the binary search algorithm in more detail. 13.3 discusses how it is implemented
and its return values in detail. Seeing how it is implemented may help you understand how to use it appropriately.

Style Guidelines and Grading:
You may not use any features from Java's collection framework on this assignment, such as ArrayList or other pre-
existing collection classes. You also may not use the Arrays.sort method to sort your list.
A major focus of our style grading is redundancy. As much as possible you should avoid redundancy and repeated logic
within your code, such as by factoring out common code from if/else statements, creating "helper" methods to capture
repeated code, or having some of your methods/constructors call others if their behaviors are related. Any additional
methods you add to SortedIntList beyond those specified should be private so that outside code cannot call them.
Note that even constructors can be redundant; if two or more constructors in your class contain similar or identical code,
you should find a way to reduce this redundancy by making them call each other as appropriate.
Properly encapsulate your objects by making any data fields in your class private. Avoid unnecessary fields; use fields
to store important data of your objects but not to store temporary values only used within a single call to one method.
Fields should always be initialized inside a constructor or method, never at declaration.
You should follow good general style guidelines such as: appropriately using control structures like loops and if/else
statements; avoiding redundancy using techniques such as methods, loops, and if/else factoring; properly using
indentation, good variable names, and proper types; and not having any lines of code longer than 100 characters.
Commenting will be more of a style focus on this program (and future programs) than it was on the last assignment. You
should comment your code with a heading at the top of your class with your name, section, and a description of the
overall program. Also place a comment heading atop each method, and a comment on any complex sections of your code.
Not only will we look for the existence of comments on this assignment, but we also have stricter expectations about the
quality of their content. Comment headings should use descriptive complete sentences and should be written in your own
words, explaining each method's behavior, parameters, return values, and pre/post-conditions as appropriate. If the
method potentially throws any exceptions, comment this and explain what exceptions it throws and under what conditions
it will throw them. Be concise but specific in your comments. The ArrayIntList class, along with other programs
from lecture and section this week, are good examples of appropriate commenting style for this assignment. (Your test
program should have an overall descriptive comment header at the top of the class, but it does not need commenting on
each testing method or otherwise throughout the code.)
The provided ArrayIntList file already has comments on its methods. If those comments are still correct and accurate
for describing the behavior of the SortedIntList, you may re-use them. But several aspects of the behavior,
constraints, preconditions, etc. of the SortedIntList are different than the behavior of the ArrayIntList. Any
ArrayIntList comments that do not apply to your new class should be removed and any important aspects of the
SortedIntList not described in the ArrayIntList comments should be document by new comments of your own
For reference, our SortedIntList.java is around 180 lines long including comments (and has 128 "substantive"
lines according to our Indenter tool on the course web site). But you do not have to match this; it's just listed as a sanity
check.

