
CSE 143
Lecture 21

Inheritance and the Object class; Polymorphism

read 9.2 - 9.4

slides adapted from Marty Stepp, Hélène Martin, and Ethan Apter

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Recall: Inheritance

• inheritance: Forming new classes based on existing ones.

– superclass: Parent class being extended.

– subclass: Child class that inherits behavior from superclass.

• gets a copy of every field and method from superclass

• override: To replace a superclass's method by writing a new
version of that method in a subclass.

 public class Lawyer extends Employee {

 // overrides getSalary in Employee; a raise!

 public double getSalary() {

 return 55000.00;

 }

 }

3

The super keyword

 super.method(parameters)
 super(parameters);

– Subclasses can call overridden methods/constructors with super

 public class Lawyer extends Employee {

 private boolean passedBarExam;

 public Lawyer(int vacationDays, boolean bar) {

 super(vacationDays * 2);

 this.passedBarExam = bar;

 }

 public double getSalary() {

 double baseSalary = super.getSalary();

 return baseSalary + 5000.00; // $5K raise

 }

 ...

 }

4

The class Object

• The class Object forms the root of the

overall inheritance tree of all Java classes.

– Every class is implicitly a subclass of Object

• The Object class defines several methods

that become part of every class you write.
For example:

– public String toString()

Returns a text representation of the object,
usually so that it can be printed.

5

Object methods

– What does this list of methods tell you about Java's design?

method description

protected Object clone() creates a copy of the object

public boolean equals(Object o) returns whether two objects
have the same state

protected void finalize() used for garbage collection

public Class<?> getClass() info about the object's type

public int hashCode() a code suitable for putting this
object into a hash collection

public String toString() text representation of object

public void notify()

public void notifyAll()

public void wait()

public void wait(...)

methods related to
concurrency and locking (seen
later)

6

Using the Object class

• You can store any object in a variable of type Object.

Object o1 = new Point(5, -3);

Object o2 = "hello there";

• You can write methods that accept an Object parameter.

public void checkNotNull(Object o) {

 if (o != null) {

 throw new IllegalArgumentException();

 }

• You can make arrays or collections of Objects.

Object[] a = new Object[5];

a[0] = "hello";

a[1] = new Random();

List<Object> list = new ArrayList<Object>();

7

Recall: comparing objects

• The == operator does not work well with objects.

– It compares references, not objects' state.

– It produces true only when you compare an object to itself.

 Point p1 = new Point(5, 3);

 Point p2 = new Point(5, 3);

 Point p3 = p2;

 // p1 == p2 is false;

 // p1 == p3 is false;

 // p2 == p3 is true

 // p1.equals(p2)?

 // p2.equals(p3)?

...

x 5 y 3
p1

p2

...

x 5 y 3

p3

8

Default equals method

• The Object class's equals implementation is very simple:

public class Object {

 ...

 public boolean equals(Object o) {

 return this == o;

 }

}

• However:

– When we have used equals with various objects, it didn't behave
like == . Why not? if (str1.equals(str2)) { ...

– The Java API documentation for equals is elaborate. Why?

http://download.oracle.com/javase/6/docs/api/java/lang/Object.html

9

Implementing equals

 public boolean equals(Object name) {

 statement(s) that return a boolean value ;

 }

– The parameter to equals must be of type Object.

– Having an Object parameter means any object can be passed.

• If we don't know what type it is, how can we compare it?

10

Casting references

Object o1 = new Point(5, -3);

Object o2 = "hello there";

((Point) o1).translate(6, 2); // ok

int len = ((String) o2).length(); // ok

Point p = (Point) o1;

int x = p.getX(); // ok

• Casting references is different than casting primitives.

– Really casting an Object reference into a Point reference.

– Doesn't actually change the object that is referred to.

– Tells the compiler to assume that o1 refers to a Point object.

11

The instanceof keyword

 if (variable instanceof type) {

 statement(s);

 }

• Asks if a variable refers
to an object of a given type.

– Used as a boolean test.

String s = "hello";

Point p = new Point();

expression result

s instanceof Point false

s instanceof String true

p instanceof Point true

p instanceof String false

p instanceof Object true

s instanceof Object true

null instanceof String false

null instanceof Object false

12

equals method for Points

// Returns whether o refers to a Point object with

// the same (x, y) coordinates as this Point.

public boolean equals(Object o) {

 if (o instanceof Point) {

 // o is a Point; cast and compare it

 Point other = (Point) o;

 return x == other.x && y == other.y;

 } else {

 // o is not a Point; cannot be equal

 return false;

 }

}

13

More about equals

• Equality is expected to be reflexive, symmetric, and transitive:

 a.equals(a) is true for every object a
 a.equals(b) ↔ b.equals(a)
(a.equals(b) && b.equals(c)) ↔ a.equals(c)

• No non-null object is equal to null:

 a.equals(null) is false for every object a

• Two sets are equal if they contain the same elements:

 Set<String> set1 = new HashSet<String>();

 Set<String> set2 = new TreeSet<String>();

 for (String s : "hi how are you".split(" ")) {

 set1.add(s); set2.add(s);

 }

 System.out.println(set1.equals(set2)); // true

14

The hashCode method

 public int hashCode()

 Returns an integer hash code for this object, indicating its
preferred to place it in a hash table / hash set.

– Allows us to store non-int values in a hash set/map:

 public static int hashFunction(Object o) {

 return Math.abs(o.hashCode()) % elements.length;

 }

• How is hashCode implemented?

– Depends on the type of object and its state.

• Example: a String's hashCode adds the ASCII values of its letters.

– You can write your own hashCode methods in classes you write.

• All classes come with a default version based on memory address.

15

Polymorphism

16

Polymorphism

• polymorphism: Ability for the same code to be used with
different types of objects and behave differently with each.

• A variable or parameter of type T can refer to any subclass of T.

 Employee ed = new Lawyer();

 Object otto = new Secretary();

– When a method is called on ed, it behaves as a Lawyer.

– You can call any Employee methods on ed.
You can call any Object methods on otto.

• You can not call any Lawyer-only methods on ed (e.g. sue).
You can not call any Employee methods on otto (e.g. getHours).

17

Polymorphism examples

• You can use the object's extra functionality by casting.

Employee ed = new Lawyer();

ed.getVacationDays(); // ok

ed.sue(); // compiler error

((Lawyer) ed).sue(); // ok

• You can't cast an object into something that it is not.

Object otto = new Secretary();

System.out.println(otto.toString()); // ok

otto.getVacationDays(); // compiler error

((Employee) otto).getVacationDays(); // ok

((Lawyer) otto).sue(); // runtime error

18

"Polymorphism mystery"

• Figure out the output from all methods of these classes:

 public class Snow {
 public void method2() {
 System.out.println("Snow 2");
 }

 public void method3() {
 System.out.println("Snow 3");
 }
 }

 public class Rain extends Snow {
 public void method1() {
 System.out.println("Rain 1");
 }

 public void method2() {
 System.out.println("Rain 2");
 }
 }

19

"Polymorphism mystery"

 public class Sleet extends Snow {
 public void method2() {
 System.out.println("Sleet 2");
 super.method2();
 method3();
 }

 public void method3() {
 System.out.println("Sleet 3");
 }
 }

 public class Fog extends Sleet {
 public void method1() {
 System.out.println("Fog 1");
 }

 public void method3() {
 System.out.println("Fog 3");
 }
 }

20

Technique 1: diagram

• Diagram the classes from top (superclass) to bottom.

Snow

method2

method3

method1

method2

(method3)

Rain

method1

(method2)

method3

Fog

method2

method3

Sleet

21

Technique 2: table

method Snow Rain Sleet Fog

method1

method2

method3

Italic - inherited behavior
Bold - dynamic method call

method Snow Rain Sleet Fog

method1 Rain 1

Fog 1

method2 Snow 2 Rain 2 Sleet 2

Snow 2

method3()

Sleet 2

Snow 2

method3()

method3 Snow 3 Snow 3 Sleet 3 Fog 3

22

Mystery problem, no cast

 Snow var3 = new Rain();

 var3.method2(); // What's the output?

• If the problem does not have any casting, then:

1. Look at the variable's type.
If that type does not have the method: ERROR.

2. Execute the method, behaving like the object's type.
(The variable type no longer matters in this step.)

23

Example 1

• What is the output of the following call?

 Snow var1 = new Sleet();

 var1.method2();

• Answer:

 Sleet 2

 Snow 2

 Sleet 3

Snow

method2

method3

method1

method2

(method3)

Rain

method1

(method2)

method3

Fog

method2

method3

Sleet

object

variable

24

Example 2

• What is the output of the following call?

 Snow var2 = new Rain();

 var2.method1();

• Answer:

 ERROR
 (because Snow does not
 have a method1)

Snow

method2

method3

method1

method2

(method3)

Rain

method1

(method2)

method3

Fog

method2

method3

Sleet

variable

object

25

Mystery problem with cast

 Snow var2 = new Rain();

 ((Sleet) var2).method2(); // What's the output?

• If the problem does have a type cast, then:

1. Look at the cast type.
If that type does not have the method: ERROR.

2. Make sure the object's type is the cast type or is a subclass of
the cast type. If not: ERROR. (No sideways casts!)

3. Execute the method, behaving like the object's type.
(The variable / cast types no longer matter in this step.)

26

Example 3

• What is the output of the following call?

 Snow var2 = new Rain();

 ((Rain) var2).method1();

• Answer:

 Rain 1

Snow

method2

method3

method1

method2

(method3)

Rain

method1

(method2)

method3

Fog

method2

method3

Sleet

variable

object
cast

27

Example 4

• What is the output of the following call?

 Snow var2 = new Rain();

 ((Sleet) var2).method2();

• Answer:

 ERROR
 (because the object's

type, Rain, cannot
 be cast into Sleet)

Snow

method2

method3

method1

method2

(method3)

Rain

method1

(method2)

method3

Fog

method2

method3

Sleet

object cast

variable

