
CSE 143
Lecture 20

Advanced List Implementation
(ADTs; interfaces; abstract classes; inner classes;

generics; iterators)

 read 11.1, 9.6, 15.3-15.4, 16.4-16.5

slides adapted from Marty Stepp

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Our list classes

• We have implemented the following two list collection classes:

– ArrayIntList

– LinkedIntList

– Problems:

• We should be able to treat them the same way in client code.

• Some methods are implemented the same way (redundancy).

• Linked list carries around a clunky extra node class.

• They can store only int elements, not any type of value.

• It is inefficient to get or remove each element of a linked list.

index 0 1 2

value 42 -3 17

front

data next

42

data next

-3

data next

17

3

Common code

• Notice that some of the methods are implemented the same
way in both the array and linked list classes.

– add(value)

– contains

– isEmpty

• Should we change our interface to a class? Why / why not?

– How can we capture this common behavior?

4

Abstract classes (9.6)

• abstract class: A hybrid between an interface and a class.

– defines a superclass type that can contain method declarations
(like an interface) and/or method bodies (like a class)

– like interfaces, abstract classes that cannot be instantiated
(cannot use new to create any objects of their type)

• What goes in an abstract class?

– implementation of common state and behavior that will be
inherited by subclasses (parent class role)

– declare generic behaviors that subclasses must implement
(interface role)

5

Abstract class syntax

// declaring an abstract class

public abstract class name {
 ...

 // declaring an abstract method

 // (any subclass must implement it)

 public abstract type name(parameters);

}

• A class can be abstract even if it has no abstract methods

• You can create variables (but not objects) of the abstract type

• Exercise: Introduce an abstract class into the list hierarchy.

6

Abstract and interfaces

• Normal classes that claim to implement an interface must
implement all methods of that interface:

public class Empty implements IntList {} // error

• Abstract classes can claim to implement an interface without
writing its methods; subclasses must implement the methods.

public abstract class Empty implements IntList {} // ok

public class Child extends Empty {} // error

7

An abstract list class

// Superclass with common code for a list of integers.

public abstract class AbstractIntList implements IntList {

 public void add(int value) {

 add(size(), value);

 }

 public boolean contains(int value) {

 return indexOf(value) >= 0;

 }

 public boolean isEmpty() {

 return size() == 0;

 }

}

public class ArrayIntList extends AbstractIntList { ...
public class LinkedIntList extends AbstractIntList { ...

8

Abstract class vs. interface

• Why do both interfaces and abstract classes exist in Java?

– An abstract class can do everything an interface can do and more.

– So why would someone ever use an interface?

• Answer: Java has single inheritance.

– can extend only one superclass

– can implement many interfaces

– Having interfaces allows a class to be part of a hierarchy
(polymorphism) without using up its inheritance relationship.

9

Our list classes

• We have implemented the following two list collection classes:

– ArrayIntList

– LinkedIntList

– Problems:

• We should be able to treat them the same way in client code.

• Some of their methods are implemented the same way (redundancy).

• Linked list carries around a clunky extra node class.

• They can store only int elements, not any type of value.

• It is inefficient to get or remove each element of a linked list.

index 0 1 2

value 42 -3 17

front

data next

42

data next

-3

data next

17

10

Recall: Inner classes

// outer (enclosing) class

public class name {
 ...

 // inner (nested) class

 private class name {
 ...

 }

}

– Only this file can see the inner class or make objects of it.

– Each inner object is associated with the outer object that created
it, so it can access/modify that outer object's methods/fields.

– Exercise: Convert the linked node into an inner class.

11

Our list classes

• We have implemented the following two list collection classes:

– ArrayIntList

– LinkedIntList

– Problems:

• We should be able to treat them the same way in client code.

• Some of their methods are implemented the same way (redundancy).

• Linked list carries around a clunky extra node class.

• They can store only int elements, not any type of value.

• It is inefficient to get or remove each element of a linked list.

index 0 1 2

value 42 -3 17

front

data next

42

data next

-3

data next

17

12

Implementing generics

// a parameterized (generic) class

public class name<Type> {
 ...

}

– Forces any client that constructs your object to supply a type.

• Don't write an actual type such as String; the client does that.

• Instead, write a type variable name such as E or T.

• You can require multiple type parameters separated by commas.

– The rest of your class's code can refer to that type by name.

• Exercise: Convert our list classes to use generics.

13

Generics and arrays (15.4)

public class Foo<T> {

 private T myField; // ok

 public void method1(T param) {

 myField = new T(); // error

 T[] a = new T[10]; // error

 myField = param; // ok

 T[] a2 = (T[]) (new Object[10]); // ok

 }

}

– You cannot create objects or arrays of a parameterized type.

– You can create variables of that type, accept them as parameters,
return them, or create arrays by casting from Object[] .

14

Comparing generic objects

public class ArrayList<E> {

 ...

 public int indexOf(E value) {

 for (int i = 0; i < size; i++) {

 // if (elementData[i] == value) {

 if (elementData[i].equals(value)) {

 return i;

 }

 }

 return -1;

 }

}

– When testing objects of type E for equality, must use equals

15

Generic interface (15.3, 16.5)

// Represents a list of values.

public interface List<E> {

 public void add(E value);

 public void add(int index, E value);

 public E get(int index);

 public int indexOf(E value);

 public boolean isEmpty();

 public void remove(int index);

 public void set(int index, E value);

 public int size();

}

public class ArrayList<E> implements List<E> { ...

public class LinkedList<E> implements List<E> { ...

16

Our list classes

• We have implemented the following two list collection classes:

– ArrayIntList

– LinkedIntList

– Problems:

• We should be able to treat them the same way in client code.

• Some of their methods are implemented the same way (redundancy).

• Linked list carries around a clunky extra node class.

• They can store only int elements, not any type of value.

• It is inefficient to get or remove each element of a linked list.

index 0 1 2

value 42 -3 17

front

data next

42

data next

-3

data next

17

17

Linked list iterator

• The following code is particularly slow on linked lists:

List<Integer> list = new LinkedList<Integer>();

...

for (int i = 0; i < list.size(); i++) {

 int value = list.get(i);

 if (value % 2 == 1) {

 list.remove(i);

 }

}

– Why?

– What can we do to improve the runtime?

18

Recall: Iterators (11.1)

• iterator: An object that allows a client to traverse the
elements of a collection, regardless of its implementation.

– Remembers a position within a collection, and allows you to:

• get the element at that position

• advance to the next position

• (possibly) remove or change the element at that position

– A common way to examine any collection's elements.

current element: -3
current index: 1

iterator

index 0 1 2

value 42 -3 17 front

data next

42

data next

-3

data next

17

current element: -3
current index: 1

iterator

19

Iterator methods

– every provided collection has an iterator method

 Set<String> set = new HashSet<String>();
 ...
 Iterator<String> itr = set.iterator();

 ...

• Exercise: Write iterators for our linked list and array list.

– You don't need to support the remove operation.

hasNext() returns true if there are more elements to examine

next() returns the next element from the collection (throws a
NoSuchElementException if there are none left to examine)

remove() removes from the collection the last value returned by next()
(throws IllegalStateException if you have not called
next() yet)

20

Array list iterator
public class ArrayList<E> extends AbstractIntList<E> {
 ...

 // not perfect; doesn't forbid multiple removes in a row
 private class ArrayIterator implements Iterator<E> {
 private int index; // current position in list

 public ArrayIterator() {
 index = 0;
 }

 public boolean hasNext() {
 return index < size();
 }

 public E next() {
 index++;
 return get(index - 1);
 }

 public void remove() {
 ArrayList.this.remove(index - 1);
 index--;
 }
 }
}

21

Linked list iterator
public class LinkedList<E> extends AbstractIntList<E> {
 ...

 // not perfect; doesn't support remove
 private class LinkedIterator implements Iterator<E> {
 private ListNode current; // current position in list

 public LinkedIterator() {
 current = front;
 }

 public boolean hasNext() {
 return current != null;
 }

 public E next() {
 E result = current.data;
 current = current.next;
 return result;
 }

 public void remove() { // not implemented for now
 throw new UnsupportedOperationException();
 }
 }
}

22

for-each loop and Iterable

• Java's collections can be iterated using a "for-each" loop:

List<String> list = new LinkedList<String>();

...

for (String s : list) {

 System.out.println(s);

}

– Our collections do not work in this way.

• To fix this, your list must implement the Iterable interface.

 public interface Iterable<E> {

 public Iterator<E> iterator();

 }

23

Final List interface (15.3, 16.5)

// Represents a list of values.

public interface List<E> extends Iterable<E> {

 public void add(E value);

 public void add(int index, E value);

 public E get(int index);

 public int indexOf(E value);

 public boolean isEmpty();

 public Iterator<E> iterator();

 public void remove(int index);

 public void set(int index, E value);

 public int size();

}

