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Our list classes 

• We have implemented the following two list collection classes: 
 

– ArrayIntList 

 

 

– LinkedIntList 

 

 

– Problems: 

• We should be able to treat them the same way in client code. 

• Some methods are implemented the same way (redundancy). 

• Linked list carries around a clunky extra node class. 

• They can store only int elements, not any type of value. 

• It is inefficient to get or remove each element of a linked list. 

index 0 1 2 

value 42 -3 17 

front 

data next 

42 

data next 

-3 

data next 

17 
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Common code 

• Notice that some of the methods are implemented the same 
way in both the array and linked list classes. 

 

– add(value) 

– contains 

– isEmpty 

 

• Should we change our interface to a class?  Why / why not? 

– How can we capture this common behavior? 



4 

Abstract classes (9.6) 

• abstract class: A hybrid between an interface and a class. 

– defines a superclass type that can contain method declarations 
(like an interface) and/or method bodies (like a class) 

– like interfaces, abstract classes that cannot be instantiated 
(cannot use new to create any objects of their type) 

 

• What goes in an abstract class? 

– implementation of common state and behavior that will be 
inherited by subclasses (parent class role) 

– declare generic behaviors that subclasses must implement 
(interface role) 
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Abstract class syntax 

// declaring an abstract class 

public abstract class name { 
    ... 
 

    // declaring an abstract method 

    // (any subclass must implement it) 

    public abstract type name(parameters); 
 

} 

 

• A class can be abstract even if it has no abstract methods 

• You can create variables (but not objects) of the abstract type 

 

• Exercise: Introduce an abstract class into the list hierarchy. 
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Abstract and interfaces 

• Normal classes that claim to implement an interface must 
implement all methods of that interface: 

 

public class Empty implements IntList {}  // error 

 

 

• Abstract classes can claim to implement an interface without 
writing its methods; subclasses must implement the methods. 

 

public abstract class Empty implements IntList {} // ok 
 

public class Child extends Empty {}       // error 
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An abstract list class 

// Superclass with common code for a list of integers. 

public abstract class AbstractIntList implements IntList { 

    public void add(int value) { 

        add(size(), value); 

    } 
     

    public boolean contains(int value) { 

        return indexOf(value) >= 0; 

    } 
     

    public boolean isEmpty() { 

        return size() == 0; 

    } 

} 

 

 

public class ArrayIntList extends AbstractIntList { ... 
public class LinkedIntList extends AbstractIntList { ... 
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Abstract class vs. interface 

• Why do both interfaces and abstract classes exist in Java? 

– An abstract class can do everything an interface can do and more. 

– So why would someone ever use an interface? 

 

• Answer: Java has single inheritance. 

– can extend only one superclass 

– can implement many interfaces 
 

– Having interfaces allows a class to be part of a hierarchy 
(polymorphism) without using up its inheritance relationship. 
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Our list classes 

• We have implemented the following two list collection classes: 
 

– ArrayIntList 

 

 

– LinkedIntList 

 

 

– Problems: 

• We should be able to treat them the same way in client code. 

• Some of their methods are implemented the same way (redundancy). 

• Linked list carries around a clunky extra node class. 

• They can store only int elements, not any type of value. 

• It is inefficient to get or remove each element of a linked list. 

index 0 1 2 

value 42 -3 17 

front 

data next 

42 

data next 

-3 

data next 

17 
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Recall: Inner classes 

// outer (enclosing) class 

public class name { 
    ... 

 

    // inner (nested) class 

    private class name { 
        ... 

    } 

} 

 

– Only this file can see the inner class or make objects of it. 

– Each inner object is associated with the outer object that created 
it, so it can access/modify that outer object's methods/fields. 
 

– Exercise: Convert the linked node into an inner class. 
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Our list classes 

• We have implemented the following two list collection classes: 
 

– ArrayIntList 

 

 

– LinkedIntList 

 

 

– Problems: 

• We should be able to treat them the same way in client code. 

• Some of their methods are implemented the same way (redundancy). 

• Linked list carries around a clunky extra node class. 

• They can store only int elements, not any type of value. 

• It is inefficient to get or remove each element of a linked list. 

index 0 1 2 

value 42 -3 17 

front 

data next 

42 

data next 

-3 

data next 

17 
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Implementing generics 

// a parameterized (generic) class 

public class name<Type> { 
    ... 

} 

 

– Forces any client that constructs your object to supply a type. 

• Don't write an actual type such as String; the client does that. 

• Instead, write a type variable name such as E or T. 
 

• You can require multiple type parameters separated by commas. 

 

– The rest of your class's code can refer to that type by name. 

 

• Exercise: Convert our list classes to use generics. 
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Generics and arrays (15.4) 

public class Foo<T> { 

    private T myField;                    // ok 
 

 

    public void method1(T param) { 

        myField = new T();             // error 

        T[] a = new T[10];             // error 
 

 

        myField = param;                  // ok 

        T[] a2 = (T[]) (new Object[10]);  // ok 

    } 

} 

 

– You cannot create objects or arrays of a parameterized type. 

– You can create variables of that type, accept them as parameters, 
return them, or create arrays by casting from Object[] . 
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Comparing generic objects 

public class ArrayList<E> { 

    ... 

    public int indexOf(E value) { 

        for (int i = 0; i < size; i++) { 

        // if (elementData[i] == value) { 

           if (elementData[i].equals(value)) { 

               return i; 

           } 

        } 

        return -1; 

    } 

} 

 

– When testing objects of type E for equality, must use equals 
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Generic interface (15.3, 16.5) 

// Represents a list of values. 

public interface List<E> { 

    public void add(E value); 

    public void add(int index, E value); 

    public E get(int index); 

    public int indexOf(E value); 

    public boolean isEmpty(); 

    public void remove(int index); 

    public void set(int index, E value); 

    public int size(); 

} 

 

public class ArrayList<E> implements List<E> { ... 
 

public class LinkedList<E> implements List<E> { ... 
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Our list classes 

• We have implemented the following two list collection classes: 
 

– ArrayIntList 

 

 

– LinkedIntList 

 

 

– Problems: 

• We should be able to treat them the same way in client code. 

• Some of their methods are implemented the same way (redundancy). 

• Linked list carries around a clunky extra node class. 

• They can store only int elements, not any type of value. 

• It is inefficient to get or remove each element of a linked list. 

index 0 1 2 

value 42 -3 17 

front 

data next 

42 

data next 

-3 

data next 

17 
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Linked list iterator 

• The following code is particularly slow on linked lists: 
 

List<Integer> list = new LinkedList<Integer>(); 

... 

for (int i = 0; i < list.size(); i++) { 

    int value = list.get(i); 

    if (value % 2 == 1) { 

        list.remove(i); 

    } 

} 

 

– Why? 

– What can we do to improve the runtime? 
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Recall: Iterators (11.1) 

• iterator: An object that allows a client to traverse the 
elements of a collection, regardless of its implementation. 

– Remembers a position within a collection, and allows you to: 

• get the element at that position 

• advance to the next position 

• (possibly) remove or change the element at that position 
 

– A common way to examine any  collection's elements. 

current element: -3 
current index:  1 

iterator 

index 0 1 2 

value 42 -3 17 front 

data next 

42 

data next 

-3 

data next 

17 

current element: -3 
current index:  1 

iterator 
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Iterator methods 

 

 

 

 

 

 

– every provided collection has an iterator method 
 

 Set<String> set = new HashSet<String>(); 
 ... 
 Iterator<String> itr = set.iterator(); 

 ... 
 

• Exercise: Write iterators for our linked list and array list. 

– You don't need to support the remove operation. 

hasNext() returns true if there are more elements to examine 

next() returns the next element from the collection (throws a 
NoSuchElementException if there are none left to examine) 

remove() removes from the collection the last value returned by next() 
(throws IllegalStateException if you have not called 
next() yet) 
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Array list iterator 
public class ArrayList<E> extends AbstractIntList<E> { 
    ... 
 

    // not perfect; doesn't forbid multiple removes in a row 
    private class ArrayIterator implements Iterator<E> { 
        private int index;   // current position in list 
 

        public ArrayIterator() { 
            index = 0; 
        } 
 

        public boolean hasNext() { 
            return index < size(); 
        } 
 

        public E next() { 
            index++; 
            return get(index - 1); 
        } 
 
        public void remove() { 
            ArrayList.this.remove(index - 1); 
            index--; 
        } 
    }     
} 
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Linked list iterator 
public class LinkedList<E> extends AbstractIntList<E> { 
    ... 
 

    // not perfect; doesn't support remove 
    private class LinkedIterator implements Iterator<E> { 
        private ListNode current;   // current position in list 
 

        public LinkedIterator() { 
            current = front; 
        } 
 

        public boolean hasNext() { 
            return current != null; 
        } 
 

        public E next() { 
            E result = current.data; 
            current = current.next; 
            return result; 
        } 
 
        public void remove() {      // not implemented for now 
            throw new UnsupportedOperationException(); 
        } 
    }     
} 
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for-each loop and Iterable 

• Java's collections can be iterated using a "for-each" loop: 
 

List<String> list = new LinkedList<String>(); 

... 

for (String s : list) { 

    System.out.println(s); 

} 
 

– Our collections do not work in this way. 
 

• To fix this, your list must implement the Iterable interface. 
 

 public interface Iterable<E> { 

     public Iterator<E> iterator(); 

 } 
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Final List interface (15.3, 16.5) 

// Represents a list of values. 

public interface List<E> extends Iterable<E> { 

    public void add(E value); 

    public void add(int index, E value); 

    public E get(int index); 

    public int indexOf(E value); 

    public boolean isEmpty(); 

    public Iterator<E> iterator(); 

    public void remove(int index); 

    public void set(int index, E value); 

    public int size(); 

} 


