CSE 143
Lecture 17

Binary Search Trees continued; Tree Sets

read 17.3-17.5

material and slides adapted from Marty Stepp, Héléne Martin and Stuart Reges
http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

Recall: x = change(x)

e Methods that modify a tree should have the following pattern:
— input (parameter): old state of the node
— output (return): new state of the node

node parameter your

L

before method

return node

»
Ll

after

e In order to actually change the tree, you must reassign:

node = change (node, parameters) ;

node.left = change (node.left, parameters);

node.right = change (node.right, parameters) ;
(

overallRoot = change (overallRoot, parameters) ;

Add method

// Adds the given value to this BST in sorted order.
public void add(int value) {

overallRoot = add(overallRoot, wvalue);

}

private IntTreeNode add (IntTreeNode node,

int value) {
if (node == null) {

node = new IntTreeNode (value) ;
} else 1f (node.data > wvalue) {

node.left = add(node.left, wvalue); overallRoot
} else 1f (node.data < wvalue) {

node.right = add(node.right, value);
} // else a duplicate

return node;

e Add a method getMin to the IntTree class that returns the

minimum integer value from the tree. Assume that the
elements of the IntTree constitute a legal binary search tree.

Throw a NoSuchElementException if the tree is empty.

int min = tree.getMin(); // -3
overall root

Exercise solution

// Returns the minimum value from this BST.
// Throws a NoSuchElementException if the tree is empty.
public int getMin () {
i1f (overallRoot == null) {
throw new NoSuchElementException();

}

return getMin (overallRoot) ;

}

private int getMin (IntTreeNode root) {
1f (root.left == null) { overallRoot
return root.data;

} else { @

return getMin (root.left);

: 29 @

e Add a method remove to the IntTree class that removes a

given integer value from the tree, if present. Remove the
value in such a way as to maintain BST ordering.

e tree.remove Overa” rOOt

(
e tree.remove (
e tree.remove (

(

e tree.remove

Cases for removal 1

1. a leaf: replace with null
2. a node with a left child only: replace with left child
3. a node with a right child only: replace with right child

overaII root overall root overall root overall root

®
s e e

tree.remove (; tree.remove (

Cases for removal 2

4. a node with both children: replace with min from right
e (replacing with max from left would also work)

overall root overall root

29, 87, 29, 87,

Exercise solution

// Removes the given value from this BST, if it exists.
public void remove (int value) {

overallRoot = remove (overallRoot, wvalue);
}

private IntTreeNode remove (IntTreeNode root, 1nt value) {
if (root == null) {
return null;
} else 1f (root.data > wvalue) {
root.left = remove (root.left, wvalue);
} else 1if (root.data < wvalue) {
root.right = remove (root.right, wvalue);

} else { // root.data == value; remove this node
1f (root.right == null) {
return root.left; // no R child; replace w/ L
} else 1f (root.left == null) {
return root.right; // no L child; replace w/ R
} else {

// both children; replace w/ min from R
root.data = getMin (root.right);
root.right = remove (root.right, root.data);
}
}

return root;

Searching BSTs

e The BSTs below contain the same elements. overall root
— What orders are "better" for searching?

overall root

overall root

Trees and balance

» balanced tree: One whose subtrees differ in height by at
most 1 and are themselves balanced.

— A balanced tree of N nodes has a height of ~ log, N.
— A very unbalanced tree can have a height close to N.

— The runtime of adding to / searching a
BST is closely related to height. overall root

— Some tree collections (e.g. TreeSet)

contain code to balance themselves
as new nodes are added.

height = 4

(balanced) ! »

Implementing a Tree Set

read 17.4 - 17.5

A tree set

e Our searchTree class is essentially a set.
— operations: add, remove, contains, size, isEmpty
— similar to the Treeset class in java.util

e Let's actually turn it into a full set implementation.
— step 1: create ADT interface; implement it
— step 2: get rid of separate node class file overallRoot

— Step 3: make tree capable of storing (k)
any type of data (not just int)
e ()

ORONONO

13

Recall: ADTSs (11.1)

o abstract data type (ADT): A specification of a collection of
data and the operations that can be performed on it.

— Describes what a collection does, not Aow it does it.

e Java's collection framework describes ADTs with interfaces:
— Collection, Deque, List, Map, Queue, Set, SortedMap

e An ADT can be implemented in multiple ways by classes:
— ArrayList and LinkedList implement List

— HashSet and TreeSet implement set
- LinkedList , ArrayDeque, etc. implement Queue

14

An IntSet Iinterface

// Represents a list of integers.
public interface IntSet {
public void add(int value);
public boolean contains (int wvalue);
public boolean isEmpty () ;
public void remove (1nt value);
public int size();

public class IntTreeSet implements IntSet { ...

15

To get rid of our separate node file, we can use an /nner c/ass.

e inner class: A class defined inside of another class.
— inner classes are hidden from other classes (encapsulated)
— inner objects can access/modify the fields of the outer object

Instance of
EnclosingClass Instance of

Ihnerilass

16

Inner class syntax

// outer (enclosing) class
public class name

// inner (nested) class
private class hame {

}
}

— Only this file can see the inner class or make objects of it.

— Each inner object is associated with the outer object that created
it, so it can access/modify that outer object's methods/fields.
e If necessary, can refer to outer object as OuterClassName. this

17

Recall: Type Parameters

ArrayList<Type> name = new ArrayList<Type> () ;

e When constructing a java.util.ArrayList, you specify the
type of elements it will contain in < and >.

- ArrayList accepts a type parameter; it is a generic class.

ArraylList<String> names = new ArraylList<String> () ;
names.add ("Marty Stepp"):;

names.add ("Helene Martin") ;
names.add (42); // compiler error

18

Implementing generics

// a parameterized (generic) class
public class name<Type> {

}

— Forces any client that constructs your object to supply a type.
e Don't write an actual type such as String; the client does that.
e Instead, write a type variable name such as E or T.

e You can require multiple type parameters separated by commas.

— The rest of your class's code can refer to that type by name.

19

Generics and inner classes

public class Foo<T> {
private class Inner<T> {...} // incorrect
private class Inner {...} // correct

— If an outer class declares a type parameter,
inner classes can also use that type parameter.

— The inner class should NOT redeclare the type parameter.
e (If you do, it will create a second type param with the same name.)

20

Issues with generic objects

public class TreeSet<E> {

public void example (E valuel, E value2) {

// BAD: valuel == value?2 (they are objects)
// GOOD: wvaluel.equals (value2)

// BAD: wvaluel < value?
// GOOD: wvaluel.compareTo (value2) < 0

— When testing objects of type E for equality, must use equals

— When testing objects of type E for < or >, must use compareTo
e Problem: By default, compareTo doesn't compile! What's wrong!

21

Type constraints

// a parameterized (generic) class
public class name<Type extends Class/Interface> {

}

— A type constraint forces the client to supply a type that is a
subclass of a given superclass or implements a given interface.

e Then the rest of your code can assume that the type has all of the
methods in that superclass / interface and can call them.

22

Generic set interface

// Represents a list of wvalues.
public interface Set<E> {
public void add(E value);
public boolean 1sEmpty () ;
public boolean contains (E value);
public voild remove (E value);
public int size();

}

public class TreeSet<E extends Comparable<E>>
implements Set<E> {

23

