
CSE 143
Lecture 14

Interfaces; Abstract Data Types (ADTs)

reading: 9.5, 11.1; 16.4

slides adapted from Marty Stepp and Hélène Martin

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Related classes

Consider classes for shapes with common features:

• Circle (defined by radius r):

 area =  r 2, perimeter = 2  r

• Rectangle (defined by width w and height h):

 area = w h, perimeter = 2w + 2h

• Triangle (defined by side lengths a, b, and c)

 area = √(s (s - a) (s - b) (s - c))

 where s = ½ (a + b + c),

 perimeter = a + b + c

– Every shape has these, but each computes them differently.

r

w

h

a

b

c

3

Interfaces (9.5)

• interface: A list of methods that a class can promise to implement.

– Inheritance gives you an is-a relationship and code sharing.

• A Lawyer can be treated as an Employee and inherits its code.

– Interfaces give you an is-a relationship without code sharing.

• A Rectangle object can be treated as a Shape but inherits no code.

– Analogous to non-programming idea of roles or certifications:

• "I'm certified as a CPA accountant.
This assures you I know how to do taxes, audits, and consulting."

• "I'm 'certified' as a Shape, because I implement the Shape interface.
This assures you I know how to compute my area and perimeter."

4

Interface syntax

public interface name {
 public type name(type name, ..., type name);
 public type name(type name, ..., type name);
 ...
 public type name(type name, ..., type name);
}

Example:
public interface Vehicle {

 public int getSpeed();

 public void setDirection(int direction);

}

5

Shape interface

 // Describes features common to all shapes.

 public interface Shape {

 public double area();

 public double perimeter();

 }

– Saved as Shape.java

• abstract method: A header without an implementation.

– The actual bodies are not specified, because we want to allow
each class to implement the behavior in its own way.

6

Implementing an interface

 public class name implements interface {
 ...
 }

• A class can declare that it "implements" an interface.

– The class must contain each method in that interface.

 public class Bicycle implements Vehicle {

 ...
 }

 (Otherwise it will fail to compile.)
 Banana.java:1: Banana is not abstract and does
not override abstract method area() in Shape

 public class Banana implements Shape {

 ^

7

Interfaces + polymorphism

• Interfaces benefit the client code author the most.

– They allow polymorphism.
(the same code can work with different types of objects)

 public static void printInfo(Shape s) {

 System.out.println("The shape: " + s);

 System.out.println("area : " + s.area());

 System.out.println("perim: " + s.perimeter());

 System.out.println();

 }

 ...
 Circle circ = new Circle(12.0);

 Triangle tri = new Triangle(5, 12, 13);

 printInfo(circ);

 printInfo(tri);

8

Linked vs. array lists

• We have implemented two collection classes:

– ArrayIntList

– LinkedIntList

– They have similar behavior, implemented in different ways.
We should be able to treat them the same way in client code.

index 0 1 2 3

value 42 -3 17 9

front

data next

42

data next

-3

data next

17

data next

9

9

An IntList interface

// Represents a list of integers.

public interface IntList {

 public void add(int value);

 public void add(int index, int value);

 public int get(int index);

 public int indexOf(int value);

 public boolean isEmpty();

 public void remove(int index);

 public void set(int index, int value);

 public int size();

}

public class ArrayIntList implements IntList { ...

public class LinkedIntList implements IntList { ...

10

Client code w/ interface

public class ListClient {

 public static void main(String[] args) {

 IntList list1 = new ArrayIntList();

 process(list1);

 IntList list2 = new LinkedIntList();

 process(list2);

 }

 public static void process(IntList list) {

 list.add(18);

 list.add(27);

 list.add(93);

 System.out.println(list);

 list.remove(1);

 System.out.println(list);

 }

}

11

ADTs as interfaces (11.1)

• abstract data type (ADT): A specification of a collection of
data and the operations that can be performed on it.

– Describes what a collection does, not how it does it.

• Java's collection framework uses interfaces to describe ADTs:

– Collection, Deque, List, Map, Queue, Set

• An ADT can be implemented in multiple ways by classes:

– ArrayList and LinkedList implement List

– HashSet and TreeSet implement Set

– LinkedList , ArrayDeque, etc. implement Queue

• They messed up on Stack; there's no Stack interface, just a class.

12

Using ADT interfaces

When using Java's built-in collection classes:

• It is considered good practice to always declare collection
variables using the corresponding ADT interface type:

 List<String> list = new ArrayList<String>();

• Methods that accept a collection as a parameter should also
declare the parameter using the ADT interface type:

public void stutter(List<String> list) {

 ...

}

Iterators

reading: 11.1; 15.3; 16.5

14

Examining sets and maps

• elements of Java Sets and Maps can't be accessed by index

– must use a "foreach" loop:

 Set<Integer> scores = new HashSet<Integer>();

 for (int score : scores) {

 System.out.println("The score is " + score);

 }

– Problem: foreach is read-only; cannot modify set while looping

 for (int score : scores) {

 if (score < 60) {

 // throws a ConcurrentModificationException

 scores.remove(score);

 }

 }

15

Iterators (11.1)

• iterator: An object that allows a client to traverse the
elements of any collection.

– Remembers a position, and lets you:

• get the element at that position

• advance to the next position

• remove the element at that position

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 7 5 12 0 0 0 0

size 6

list

current element: 9
current index: 2

iterator

set
"the"

"to"

"from"

"we"

current element: "from"
next element: "the"

iterator

16

Iterator methods

•Iterator interface in java.util

– every collection has an iterator() method that returns an

iterator over its elements

 Set<String> set = new HashSet<String>();
 ...
 Iterator<String> itr = set.iterator();

 ...

hasNext() returns true if there are more elements to examine

next() returns the next element from the collection (throws a
NoSuchElementException if there are none left to examine)

remove() removes the last value returned by next() (throws an
IllegalStateException if you haven't called next() yet)

17

Iterator example

 Set<Integer> scores = new TreeSet<Integer>();

 scores.add(94);

 scores.add(38); // Jenny
 scores.add(87);

 scores.add(43); // Marty
 scores.add(72);

 ...

 Iterator<Integer> itr = scores.iterator();
 while (itr.hasNext()) {
 int score = itr.next();

 System.out.println("The score is " + score);

 // eliminate any failing grades
 if (score < 60) {

 itr.remove();
 }

 }

 System.out.println(scores); // [72, 87, 94]

18

A surprising example

• What's bad about this code?

List<Integer> list = new LinkedList<Integer>();

... (add lots of elements) ...

for (int i = 0; i < list.size(); i++) {

 System.out.println(list.get(i));

}

front =

data next

42

data next

-3

data next

17

element 0 element 1 element 2

19

Iterators and linked lists

• Iterators are particularly useful with linked lists.

– The previous code is O(N2) because each call on get must start
from the beginning of the list and walk to index i.

– Using an iterator, the same code is O(N). The iterator
remembers its position and doesn't start over each time.

current element: -3
current index: 1

iterator

front =

data next

42

data next

-3

data next

17

element 0 element 1 element 2

20

ListIterator

ListIterator<String> li = myList.listIterator();

• lists have a more powerful ListIterator with more methods

– can iterate forwards or backwards

– can add/set element values (efficient for linked lists)

add(value) inserts an element just after the iterator's position

hasPrevious() true if there are more elements before the iterator

nextIndex() the index of the element that would be returned the next
time next is called on the iterator

previousIndex() the index of the element that would be returned the next
time previous is called on the iterator

previous() returns the element before the iterator (throws a
NoSuchElementException if there are none)

set(value) replaces the element last returned by next or previous

with the given value

