
CSE 143
Lecture 18

More Recursive Backtracking

reading: "Appendix R" on course web site

slides adapted from Marty Stepp

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Exercise: Dominoes

• The game of dominoes is played with small
black tiles, each having 2 numbers of dots
from 0-6. Players line up tiles to match dots.

• Given a class Domino with the following public methods:

int first() // first dots value

int second() // second dots value

void flip() // inverts 1st/2nd

boolean contains(int n) // true if 1st/2nd == n

String toString() // e.g. "(3|5)"

• Write a method hasChain that takes a List of dominoes and

a starting/ending dot value, and returns whether the dominoes
can be made into a chain that starts/ends with those values.

3

Domino chains

• Suppose we have the following dominoes:

• We can link them into a chain from 1 to 3 as follows:

– Notice that the 3|5 domino had to be flipped.

• We can "link" one domino into a "chain" from 6 to 2 as follows:

4

Exercise client code

import java.util.*; // for ArrayList

public class SolveDominoes {

 public static void main(String[] args) {

 // [(1|4), (2|6), (4|5), (1|5), (3|5)]

 List<Domino> dominoes = new ArrayList<Domino>();

 dominoes.add(new Domino(1, 4));

 dominoes.add(new Domino(2, 6));

 dominoes.add(new Domino(4, 5));

 dominoes.add(new Domino(1, 5));

 dominoes.add(new Domino(3, 5));

 System.out.println(hasChain(dominoes, 5, 5)); // true

 System.out.println(hasChain(dominoes, 1, 5)); // true

 System.out.println(hasChain(dominoes, 1, 3)); // true

 System.out.println(hasChain(dominoes, 1, 6)); // false

 System.out.println(hasChain(dominoes, 1, 2)); // false

 }

 public static boolean hasChain(List<Domino> dominoes,

 int start, int end) {

 ...

 }

}

5

Exercise solution

public boolean hasChain(List<Domino> dominoes, int start, int end) {

 if (start == end) {

 return true; // base case

 } else {

 for (int i = 0; i < dominoes.size(); i++) {

 Domino d = dominoes.remove(i); // choose

 if (d.first() == start) { // explore

 if (hasChain(dominoes, d.second(), end)) {

 return true;

 }

 } else if (d.second() == start) {

 if (hasChain(dominoes, d.first(), end)) {

 return true;

 }

 }

 dominoes.add(i, d); // un-choose

 }

 return false;

 }

}

6

Exercise: Print chain

• Write a variation of your hasChain method that also prints

the chain of dominoes that it finds, if any.

hasChain(dominoes, 1, 3);

[(1|4), (4|5), (5|3)]

7

The "8 Queens" problem

• Consider the problem of trying to place 8 queens on a chess
board such that no queen can attack another queen.

– What are the "choices"?

– How do we "make" or
"un-make" a choice?

– How do we know when
to stop?

Q

Q

Q

Q

Q

Q

Q

Q

8

Naive algorithm

• for (each square on board):

– Place a queen there.

– Try to place the rest
of the queens.

– Un-place the queen.

– How large is the
solution space for
this algorithm?

• 64 * 63 * 62 * ...

1 2 3 4 5 6 7 8

1 Q

2

3 ...

4

5

6

7

8

9

Better algorithm idea

• Observation: In a working
solution, exactly 1 queen
must appear in each
row and in
each column.

– Redefine a "choice"
to be valid placement
of a queen in a
particular column.

– How large is the
solution space now?

• 8 * 8 * 8 * ...

1 2 3 4 5 6 7 8

1 Q

2

3 Q ...

4 ...

5 Q

6

7

8

10

Exercise

• Suppose we have a Board class with the following methods:

• Write a method solveQueens that accepts a Board as a

parameter and tries to place 8 queens on it safely.

– Your method should stop exploring if it finds a solution.

Method/Constructor Description

public Board(int size) construct empty board

public boolean isSafe(int row, int column) true if queen can be

safely placed here

public void place(int row, int column) place queen here

public void remove(int row, int column) remove queen from here

public String toString() text display of board

11

Exercise solution

// Searches for a solution to the 8 queens problem

// with this board, reporting the first result found.

public static void solveQueens(Board board) {

 if (solveQueens(board, 1)) {

 System.out.println("One solution is as follows:");

 System.out.println(board);

 } else {

 System.out.println("No solution found.");

 }

}

...

12

Exercise solution, cont'd.

// Recursively searches for a solution to 8 queens on this

// board, starting with the given column, returning true if a

// solution is found and storing that solution in the board.

// PRE: queens have been safely placed in columns 1 to (col-1)

public static boolean solveQueens(Board board, int col) {

 if (col > board.size()) {

 return true; // base case: all columns are placed

 } else {

 // recursive case: place a queen in this column

 for (int row = 1; row <= board.size(); row++) {

 if (board.isSafe(row, col)) {

 board.place(row, col); // choose

 if (explore(board, col + 1)) { // explore

 return true; // solution found

 }

 b.remove(row, col); // un-choose

 }

 }

 return false; // no solution found

 }

}

13

Maze class

• Suppose we have a Maze class with these methods:

Method/Constructor Description

public Maze(String text) construct a given maze

public int getHeight(), getWidth() get maze dimensions

public boolean isExplored(int r, int c)

public void setExplored(int r, int c)
get/set whether you
have visited a location

public void isWall(int r, int c) whether given location
is blocked by a wall

public void mark(int r, int c)

public void isMarked(int r, int c)
whether given location
is marked in a path

public String toString() text display of maze

14

Exercise: solve maze

• Write a method solveMaze that accepts a Maze and a

starting row/column as parameters and tries to find a path out
of the maze starting from that position.

– If you find a solution:

• Your code should stop exploring.

• You should mark the path out of the
maze on your way back out of the
recursion, using backtracking.

– (As you explore the maze, squares you set
as 'explored' will be printed with a dot,
and squares you 'mark' will display an X.)

15

Recall: Backtracking

A general pseudo-code algorithm for backtracking problems:

Explore(choices):

– if there are no more choices to make: stop.

– else, for each available choice C:

• Choose C.

• Explore the remaining choices.

• Un-choose C, if necessary. (backtrack!)

What are the choices in this problem?

16

Decision tree

position (row 1, col 7)

choices  (these never change)

(1, 6) (0, 7)

wall

(2, 7)

wall

(1, 8)

   

(1, 5) (0, 6)

wall

(2, 6)

wall

(1, 7)

visited

(1, 7)

visited

(0, 8)

wall

(2, 8) (1, 9)

wall

...
(1, 4) (0, 5)

wall

(2, 5) (1, 6)

visited

... ...

