
CSE 143
Lecture 9

Recursion

reading: 12.1 - 12.2

slides adapted from Marty Stepp and Hélène Martin

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Recursion

• recursion: The definition of an operation in terms of itself.

– Solving a problem using recursion depends on solving
smaller occurrences of the same problem.

• recursive programming: Writing methods that call
themselves to solve problems recursively.

– An equally powerful substitute for iteration (loops)

– Particularly well-suited to solving certain types of problems

3

Why learn recursion?

• "cultural experience" - A different way of thinking of problems

• Can solve some kinds of problems better than iteration

• Leads to elegant, simplistic, short code (when used well)

• Many programming languages ("functional" languages such as
Scheme, ML, and Haskell) use recursion exclusively (no loops)

• A key component of the rest of our assignments in CSE 143

4

Exercise

• (To a student in the front row)
How many students total are directly behind you in your
"column" of the classroom?

– You have poor vision, so you can
see only the people right next to you.
So you can't just look back and count.

– But you are allowed to ask
questions of the person next to you.

– How can we solve this problem?
(recursively)

5

The idea

• Recursion is all about breaking a big problem into smaller
occurrences of that same problem.

– Each person can solve a small part of the problem.

• What is a small version of the problem that would be easy to answer?

• What information from a neighbor might help me?

6

Recursive algorithm

• Number of people behind me:

– If there is someone behind me,
ask him/her how many people are behind him/her.

• When they respond with a value N, then I will answer N + 1.

– If there is nobody behind me, I will answer 0.

7

Recursion and cases

• Every recursive algorithm involves at least 2 cases:

– base case: A simple occurrence that can be answered directly.

– recursive case: A more complex occurrence of the problem that
cannot be directly answered, but can instead be described in
terms of smaller occurrences of the same problem.

– Some recursive algorithms have more than one base or recursive
case, but all have at least one of each.

– A crucial part of recursive programming is identifying these cases.

8

Another recursive task

• How can we remove exactly half of the M&M's in a large bowl,
without dumping them all out or being able to count them?

– What if multiple people help out with solving the problem?
Can each person do a small part of the work?

9

Recursion in Java

• Consider the following method to print a line of * characters:

// Prints a line containing the given number of stars.

// Precondition: n >= 0

public static void printStars(int n) {

 for (int i = 0; i < n; i++) {

 System.out.print("*");

 }

 System.out.println(); // end the line of output

}

• Write a recursive version of this method (that calls itself).

– Solve the problem without using any loops.

– Hint: Your solution should print just one star at a time.

10

A basic case

• What are the cases to consider?

– What is a very easy number of stars to print without a loop?

public static void printStars(int n) {

 if (n == 1) {

 // base case; just print one star

 System.out.println("*");

 } else {

 ...

 }

}

11

Handling more cases

• Handling additional cases, with no loops (in a bad way):

public static void printStars(int n) {

 if (n == 1) {

 // base case; just print one star

 System.out.println("*");

 } else if (n == 2) {

 System.out.print("*");

 System.out.println("*");

 } else if (n == 3) {

 System.out.print("*");

 System.out.print("*");

 System.out.println("*");

 } else if (n == 4) {

 System.out.print("*");

 System.out.print("*");

 System.out.print("*");

 System.out.println("*");

 } else ...

}

12

Handling more cases 2

• Taking advantage of the repeated pattern (somewhat better):

public static void printStars(int n) {

 if (n == 1) {

 // base case; just print one star

 System.out.println("*");

 } else if (n == 2) {

 System.out.print("*");

 printStars(1); // prints "*"

 } else if (n == 3) {

 System.out.print("*");

 printStars(2); // prints "**"

 } else if (n == 4) {

 System.out.print("*");

 printStars(3); // prints "***"

 } else ...

}

13

Using recursion properly

• Condensing the recursive cases into a single case:

public static void printStars(int n) {

 if (n == 1) {

 // base case; just print one star

 System.out.println("*");

 } else {

 // recursive case; print one more star

 System.out.print("*");

 printStars(n - 1);

 }

}

14

"Recursion Zen"

• The real, even simpler, base case is an n of 0, not 1:

public static void printStars(int n) {

 if (n == 0) {

 // base case; just end the line of output

 System.out.println();

 } else {

 // recursive case; print one more star

 System.out.print("*");

 printStars(n - 1);

 }

}

– Recursion Zen: The art of properly identifying the best set of
cases for a recursive algorithm and expressing them elegantly.

(A CSE 143 informal term)

15

Recursive tracing

• Consider the following recursive method:

public static int mystery(int n) {

 if (n < 10) {

 return n;

 } else {

 int a = n / 10;

 int b = n % 10;

 return mystery(a + b);

 }

}

– What is the result of the following call?

mystery(648)

16

A recursive trace

mystery(648):

 int a = 648 / 10; // 64

 int b = 648 % 10; // 8

 return mystery(a + b); // mystery(72)

mystery(72):

 int a = 72 / 10; // 7

 int b = 72 % 10; // 2

 return mystery(a + b); // mystery(9)

mystery(9):

 return 9;

17

Recursive tracing 2

• Consider the following recursive method:

public static int mystery(int n) {

 if (n < 10) {

 return (10 * n) + n;

 } else {

 int a = mystery(n / 10);

 int b = mystery(n % 10);

 return (100 * a) + b;

 }

}

– What is the result of the following call?

mystery(348)

18

A recursive trace 2

mystery(348)

 int a = mystery(34);

•int a = mystery(3);

return (10 * 3) + 3; // 33

•int b = mystery(4);

return (10 * 4) + 4; // 44

•return (100 * 33) + 44; // 3344

 int b = mystery(8);

return (10 * 8) + 8; // 88

– return (100 * 3344) + 88; // 334488

– What is this method really doing?

