
CSE 143 
Lecture 6 

References and Linked Nodes 

 

reading: 16.1 

 
slides adapted from Marty Stepp and Hélène Martin 

http://www.cs.washington.edu/143/ 

http://www.cs.washington.edu/143/


2 

• Complexity class of various operations on collections: 

 

 

 

 

 

 

 

 

 

– Which operations are fast, and which are slow? 

– Could we build lists differently to optimize other operations? 

Collection efficiency 

Method ArrayList SortedIntList Stack Queue 

add  (or push) 

add(index, value) - - - 

indexOf 

get - - 

remove 

set - - - 

size 

Method ArrayList SortedIntList Stack Queue 

add  (or push) O(1) O(N) O(1) O(1) 

add(index, value) O(N) - - - 

indexOf O(N) O(log N) - - 

get O(1) O(1) - - 

remove O(N) O(N) O(1) O(1) 

set O(1) - - 

size O(1) O(1) O(1) O(1) 



3 

Array vs. linked structure 

• All collections in this course use one of the following: 
 

– an array of all elements 

• examples: ArrayList, Stack, HashSet, HashMap 

 

 

– linked objects storing one element and references to other(s) 

• examples: LinkedList, TreeSet, TreeMap 

 

 

 

• This week we will learn how to create a linked list. 

• To understand linked lists, we must understand references. 

42 -3 17 9 

front 42 -3 17 9 null 



4 

A swap method? 

• Does the following swap method work?  Why or why not? 
 

 public static void main(String[] args) { 

     int a = 7; 

     int b = 35; 
 

     // swap a with b 

     swap(a, b); 
 

     System.out.println(a + " " + b); 

 } 

 

 public static void swap(int a, int b) { 

     int temp = a; 

     a = b; 

     b = temp; 

 } 



5 

Value semantics 

• value semantics: Behavior where values are copied when 

assigned to each other or passed as parameters. 
 

– When one primitive is assigned to another, its value is copied. 

– Modifying the value of one variable does not affect others. 

 
  

 int x = 5; 

 int y = x;     // x = 5, y = 5 

 y = 17;        // x = 5, y = 17 

 x = 8;         // x = 8, y = 17 



6 

Reference semantics 

• reference semantics: Behavior where variables actually store 
the address of an object in memory. 

– When one reference variable is assigned to another, the object is 
not copied; both variables refer to the same object. 

 

 int[] a1 = {4, 5, 2, 12, 14, 14, 9}; 

 int[] a2 = a1;     // refers to same array as a1 

 a2[0] = 7; 

 System.out.println(a1[0]);   // 7 

index 0 1 2 3 4 5 6 

value 4 5 2 12 14 14 9 

index 0 1 2 3 4 5 6 

value 7 5 2 12 14 14 9 

a1 

a2 



7 

References and objects 

• In Java, objects and arrays use reference semantics.  Why? 

– efficiency. Copying large objects slows down a program. 

– sharing. It's useful to share an object's data among methods. 

 
 

 DrawingPanel panel1 = new DrawingPanel(80, 50); 

 DrawingPanel panel2 = panel1;   // same window 

 panel2.setBackground(Color.CYAN); 

 
panel1 

panel2 



8 

References as fields 

• Objects can store references to other objects as fields. 

Example: Homework 2 (HTML Validator) 

– HtmlValidator stores a reference to a Queue 

– the Queue stores many references to HtmlTag objects 

– each HtmlTag object stores a reference to its element String 

private Queue<HtmlTag> tags; 
... 

HtmlValidator 

back ... ... ... front Queue 

private String element; 
... 

HtmlTag 

private String element; 
... 

HtmlTag 

l m t h String 
y d o b String 



9 

Null references 

•null : A value that does not refer to any object. 
 

– The elements of an array of objects are initialized to null. 
 

 String[] words = new String[5]; 

 

 

 

 

 

 

– not the same as the empty string "" or the string "null" 

– Why does Java have null ?  What is it used for? 

index 0 1 2 3 4 

value null null null null null words 



10 

Null references 

– Unset reference fields of an object are initialized to null. 
 

 public class Student { 

     String name; 

     int id; 

 } 

 

 Student timmy = new Student(); 

name null 

timmy id 0 



11 

Things you can do w/ null 

• store null in a variable or an array element 
String s = null; 

words[2] = null; 
 

 

• print a null reference 
System.out.println(timmy.name);      // null 

 

 

• ask whether a variable or array element is null 
if (timmy.name == null) { ...        // true 

 
 

• pass null as a parameter to a method 

– some methods don't like null parameters and throw exceptions 
 

 

• return null from a method  (often to indicate failure) 

return null; 



12 

Dereferencing 

• dereference: To access data or methods of an object. 

– Done with the dot notation, such as s.length() 

– When you use a . after an object variable, Java goes to the 

memory for that object and looks up the field/method requested. 
 
 Student timmy = new Student(); 

 timmy.name = "Timmah"; 

 String s = timmy.name.toUpperCase(); 

name null 
timmy 

id 0 

'T' 'i' 'm' 'm' 'a' 'h' 

Student String 

public int indexOf(String s) {...} 

public int length() {...} 

public String toUpperCase() {...} 



13 

Null pointer exception 

• It is illegal to dereference null (it causes an exception). 

– null does not refer to any object, so it has no methods or data. 

 
 Student timmy = new Student(); 

 String s = timmy.name.toUpperCase();   // ERROR 

 

 

 

 

 

 

 

 Output: 
 Exception in thread "main" 

 java.lang.NullPointerException 

         at Example.main(Example.java:8) 

name null 
timmy 

id 0 



14 

References to same type 

• What would happen if we had a class that declared one of its 
own type as a field? 

 
public class Strange { 

    private String name; 

    private Strange other; 

} 

 

 

– Will this compile? 

• If so, what is the behavior of the other field?  What can it do? 

• If not, why not?  What is the error and the reasoning behind it? 



15 

A list node class 

public class ListNode { 

    int data; 

    ListNode next; 

} 

 

• Each list node object stores: 

– one piece of integer data 

– a reference to another list node 

 

•ListNodes can be "linked" into chains to store a list of values: 

data next 

42 

data next 

-3 

data next 

17 

data next 

9 null 



16 

List node client example 

public class ConstructList1 { 

    public static void main(String[] args) { 

        ListNode list = new ListNode(); 

        list.data = 42; 

        list.next = new ListNode(); 

        list.next.data = -3; 

        list.next.next = new ListNode(); 

        list.next.next.data = 17; 

        list.next.next.next = null; 

        System.out.println(list.data + " " + list.next.data 

                           + " " + list.next.next.data); 

        // 42 -3 17 

    } 

} 

data next 

42 

data next 

-3 

data next 

17 null list 



17 

List node w/ constructor 

public class ListNode { 

    int data; 

    ListNode next; 

 

    public ListNode(int data) { 

        this.data = data; 

        this.next = null; 

    } 

 

    public ListNode(int data, ListNode next) { 

        this.data = data; 

        this.next = next; 

    } 

} 

 

– Exercise: Modify the previous client to use these constructors. 



18 

Linked node problem 1 

• What set of statements turns this picture: 

 

 

 

 

 

 

• Into this? 

data next 

10 

data next 

20 
list 

data next 

10 

data next 

20 
list 

data next 

30 



19 

References vs. objects 

variable = value; 
 

 

a variable  (left side of = )  is an arrow   (the base of an arrow) 

a value    (right side of = ) is an object   (a box; what an arrow points at) 

 

 

• For the list at right: 
 

– a.next = value; 

means to adjust where      points 

 

– variable = a.next; 

means to make variable point at  

data next 

10 
a 

data next 

20 1 

2 

1 

2 



20 

Reassigning references 

• when you say: 
 

– a.next = b.next; 

 

• you are saying: 

– "Make the variable  a.next refer to the same value as b.next." 

– Or, "Make a.next point to the same place that b.next points." 

 
data next 

10 
a 

data next 

20 

data next 

30 
b 

data next 

40 



21 

Linked node problem 2 

• What set of statements turns this picture: 

 

 

 

 

 

 

• Into this? 

data next 

10 

data next 

20 
list 

data next 

30 

data next 

10 
list 

data next 

20 



22 

Linked node problem 3 

• What set of statements turns this picture: 

 

 

 

 

 

 

• Into this? 

data next 

10 

data next 

20 
list1 

data next 

30 

data next 

40 
list2 

data next 

10 

data next 

30 
list1 

data next 

40 
list2 

data next 

20 



23 

Linked node problem 4 

• What set of statements turns this picture: 

 

 

 

 

 

 

• Into this? 

data next 

10 

data next 

990 
list 

... 

data next 

10 

data next 

990 
list 

... 

data next 

1000 


