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• Complexity class of various operations on collections: 

 

 

 

 

 

 

 

 

 

– Which operations are fast, and which are slow? 

– Could we build lists differently to optimize other operations? 

Collection efficiency 

Method ArrayList SortedIntList Stack Queue 

add  (or push) 

add(index, value) - - - 

indexOf 

get - - 

remove 

set - - - 

size 

Method ArrayList SortedIntList Stack Queue 

add  (or push) O(1) O(N) O(1) O(1) 

add(index, value) O(N) - - - 

indexOf O(N) O(log N) - - 

get O(1) O(1) - - 

remove O(N) O(N) O(1) O(1) 

set O(1) - - 

size O(1) O(1) O(1) O(1) 
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Array vs. linked structure 

• All collections in this course use one of the following: 
 

– an array of all elements 

• examples: ArrayList, Stack, HashSet, HashMap 

 

 

– linked objects storing one element and references to other(s) 

• examples: LinkedList, TreeSet, TreeMap 

 

 

 

• This week we will learn how to create a linked list. 

• To understand linked lists, we must understand references. 

42 -3 17 9 

front 42 -3 17 9 null 
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A swap method? 

• Does the following swap method work?  Why or why not? 
 

 public static void main(String[] args) { 

     int a = 7; 

     int b = 35; 
 

     // swap a with b 

     swap(a, b); 
 

     System.out.println(a + " " + b); 

 } 

 

 public static void swap(int a, int b) { 

     int temp = a; 

     a = b; 

     b = temp; 

 } 
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Value semantics 

• value semantics: Behavior where values are copied when 

assigned to each other or passed as parameters. 
 

– When one primitive is assigned to another, its value is copied. 

– Modifying the value of one variable does not affect others. 

 
  

 int x = 5; 

 int y = x;     // x = 5, y = 5 

 y = 17;        // x = 5, y = 17 

 x = 8;         // x = 8, y = 17 
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Reference semantics 

• reference semantics: Behavior where variables actually store 
the address of an object in memory. 

– When one reference variable is assigned to another, the object is 
not copied; both variables refer to the same object. 

 

 int[] a1 = {4, 5, 2, 12, 14, 14, 9}; 

 int[] a2 = a1;     // refers to same array as a1 

 a2[0] = 7; 

 System.out.println(a1[0]);   // 7 

index 0 1 2 3 4 5 6 

value 4 5 2 12 14 14 9 

index 0 1 2 3 4 5 6 

value 7 5 2 12 14 14 9 

a1 

a2 



7 

References and objects 

• In Java, objects and arrays use reference semantics.  Why? 

– efficiency. Copying large objects slows down a program. 

– sharing. It's useful to share an object's data among methods. 

 
 

 DrawingPanel panel1 = new DrawingPanel(80, 50); 

 DrawingPanel panel2 = panel1;   // same window 

 panel2.setBackground(Color.CYAN); 

 
panel1 

panel2 
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References as fields 

• Objects can store references to other objects as fields. 

Example: Homework 2 (HTML Validator) 

– HtmlValidator stores a reference to a Queue 

– the Queue stores many references to HtmlTag objects 

– each HtmlTag object stores a reference to its element String 

private Queue<HtmlTag> tags; 
... 

HtmlValidator 

back ... ... ... front Queue 

private String element; 
... 

HtmlTag 

private String element; 
... 

HtmlTag 

l m t h String 
y d o b String 
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Null references 

•null : A value that does not refer to any object. 
 

– The elements of an array of objects are initialized to null. 
 

 String[] words = new String[5]; 

 

 

 

 

 

 

– not the same as the empty string "" or the string "null" 

– Why does Java have null ?  What is it used for? 

index 0 1 2 3 4 

value null null null null null words 
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Null references 

– Unset reference fields of an object are initialized to null. 
 

 public class Student { 

     String name; 

     int id; 

 } 

 

 Student timmy = new Student(); 

name null 

timmy id 0 
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Things you can do w/ null 

• store null in a variable or an array element 
String s = null; 

words[2] = null; 
 

 

• print a null reference 
System.out.println(timmy.name);      // null 

 

 

• ask whether a variable or array element is null 
if (timmy.name == null) { ...        // true 

 
 

• pass null as a parameter to a method 

– some methods don't like null parameters and throw exceptions 
 

 

• return null from a method  (often to indicate failure) 

return null; 
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Dereferencing 

• dereference: To access data or methods of an object. 

– Done with the dot notation, such as s.length() 

– When you use a . after an object variable, Java goes to the 

memory for that object and looks up the field/method requested. 
 
 Student timmy = new Student(); 

 timmy.name = "Timmah"; 

 String s = timmy.name.toUpperCase(); 

name null 
timmy 

id 0 

'T' 'i' 'm' 'm' 'a' 'h' 

Student String 

public int indexOf(String s) {...} 

public int length() {...} 

public String toUpperCase() {...} 
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Null pointer exception 

• It is illegal to dereference null (it causes an exception). 

– null does not refer to any object, so it has no methods or data. 

 
 Student timmy = new Student(); 

 String s = timmy.name.toUpperCase();   // ERROR 

 

 

 

 

 

 

 

 Output: 
 Exception in thread "main" 

 java.lang.NullPointerException 

         at Example.main(Example.java:8) 

name null 
timmy 

id 0 



14 

References to same type 

• What would happen if we had a class that declared one of its 
own type as a field? 

 
public class Strange { 

    private String name; 

    private Strange other; 

} 

 

 

– Will this compile? 

• If so, what is the behavior of the other field?  What can it do? 

• If not, why not?  What is the error and the reasoning behind it? 
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A list node class 

public class ListNode { 

    int data; 

    ListNode next; 

} 

 

• Each list node object stores: 

– one piece of integer data 

– a reference to another list node 

 

•ListNodes can be "linked" into chains to store a list of values: 

data next 

42 

data next 

-3 

data next 

17 

data next 

9 null 
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List node client example 

public class ConstructList1 { 

    public static void main(String[] args) { 

        ListNode list = new ListNode(); 

        list.data = 42; 

        list.next = new ListNode(); 

        list.next.data = -3; 

        list.next.next = new ListNode(); 

        list.next.next.data = 17; 

        list.next.next.next = null; 

        System.out.println(list.data + " " + list.next.data 

                           + " " + list.next.next.data); 

        // 42 -3 17 

    } 

} 

data next 

42 

data next 

-3 

data next 

17 null list 
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List node w/ constructor 

public class ListNode { 

    int data; 

    ListNode next; 

 

    public ListNode(int data) { 

        this.data = data; 

        this.next = null; 

    } 

 

    public ListNode(int data, ListNode next) { 

        this.data = data; 

        this.next = next; 

    } 

} 

 

– Exercise: Modify the previous client to use these constructors. 
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Linked node problem 1 

• What set of statements turns this picture: 

 

 

 

 

 

 

• Into this? 

data next 

10 

data next 

20 
list 

data next 

10 

data next 

20 
list 

data next 

30 
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References vs. objects 

variable = value; 
 

 

a variable  (left side of = )  is an arrow   (the base of an arrow) 

a value    (right side of = ) is an object   (a box; what an arrow points at) 

 

 

• For the list at right: 
 

– a.next = value; 

means to adjust where      points 

 

– variable = a.next; 

means to make variable point at  

data next 

10 
a 

data next 

20 1 

2 

1 

2 
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Reassigning references 

• when you say: 
 

– a.next = b.next; 

 

• you are saying: 

– "Make the variable  a.next refer to the same value as b.next." 

– Or, "Make a.next point to the same place that b.next points." 

 
data next 

10 
a 

data next 

20 

data next 

30 
b 

data next 

40 
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Linked node problem 2 

• What set of statements turns this picture: 

 

 

 

 

 

 

• Into this? 

data next 

10 

data next 

20 
list 

data next 

30 

data next 

10 
list 

data next 

20 



22 

Linked node problem 3 

• What set of statements turns this picture: 

 

 

 

 

 

 

• Into this? 

data next 

10 

data next 

20 
list1 

data next 

30 

data next 

40 
list2 

data next 

10 

data next 

30 
list1 

data next 

40 
list2 

data next 

20 
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Linked node problem 4 

• What set of statements turns this picture: 

 

 

 

 

 

 

• Into this? 

data next 

10 

data next 

990 
list 

... 

data next 

10 

data next 

990 
list 

... 

data next 

1000 


