
Higher Order Functions

Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.
Except where otherwise noted, this work is licensed under:

http://creativecommons.org/licenses/by-nc-sa/3.0

2

Functions as parameters

• Have you ever wanted to pass an entire function as
a parameter

• Python has functions as first-class citizens, so you
can do this

• You simply pass the functions by name

3

Higher-Order Functions

• A higher-order function is a function that takes
another function as a parameter

• They are “higher-order” because it’s a function of a
function

• Examples
– Map
– Reduce
– Filter

• Lambda works great as a parameter to higher-order
functions if you can deal with its limitations

4

Map

map(function, iterable, ...)

• Map applies function to each element of
iterable and creates a list of the results

• You can optionally provide more iterables as
parameters to map and it will place tuples in
the result list

• Map returns an iterator which can be cast to
list

5

Map Example

Example

1
2
3
4
5
6
7

nums = [0, 4, 7, 2, 1, 0 , 9 , 3, 5, 6, 8, 0, 3]

nums = list(map(lambda x : x % 5, nums))

print(nums)
#[0, 4, 2, 2, 1, 0, 4, 3, 0, 1, 3, 0, 3]

6

Map Problem

Goal: given a list of three dimensional points in
the form of tuples, create a new list consisting
of the distances of each point from the origin

Loop Method:
- distance(x, y, z) = sqrt(x**2 + y**2 + z**2)
- loop through the list and add results to a
new list

7

Map Problem

Solution

1
2
3
4
5
6
7
8
9

from math import sqrt

points = [(2, 1, 3), (5, 7, -3), (2, 4, 0), (9, 6, 8)]

def distance(point) :
 x, y, z = point
 return sqrt(x**2 + y**2 + z**2)

distances = list(map(distance, points))

8

Filter

filter(function, iterable)
• The filter runs through each element of iterable

(any iterable object such as a List or another
collection)

• It applies function to each element of iterable
• If function returns True for that element then the

element is put into a List
• This list is returned from filter in versions of

python under 3
• In python 3, filter returns an iterator which must

be cast to type list with list()

9

Filter Example

Example

1
2
3
4
5
6

nums = [0, 4, 7, 2, 1, 0 , 9 , 3, 5, 6, 8, 0, 3]

nums = list(filter(lambda x : x != 0, nums))

print(nums) #[4, 7, 2, 1, 9, 3, 5, 6, 8, 3]

10

Filter Problem
NaN = float("nan")

scores = [[NaN, 12, .5, 78, math.pi],

 [2, 13, .5, .7, math.pi / 2],

 [2, NaN, .5, 78, math.pi],

 [2, 14, .5, 39, 1 - math.pi]]

Goal: given a list of lists containing answers to
an algebra exam, filter out those that did not
submit a response for one of the questions,
denoted by NaN

11

Filter Problem
Solution

1
2
3
4
5
6
7
8
9
0
1
2
3
4

NaN = float("nan")
scores = [[NaN, 12, .5, 78, pi],[2, 13, .5, .7, pi / 2],
 [2,NaN, .5, 78, pi],[2, 14, .5, 39, 1 - pi]]
#solution 1 - intuitive
def has_NaN(answers) :

for num in answers :
if isnan(float(num)) :

return False
return True

valid = list(filter(has_NaN, scores))
print(valid2)
#Solution 2 – sick python solution
valid = list(filter(lambda x : NaN not in x, scores))
print(valid)

12

Reduce

reduce(function, iterable[,initializer])

• Reduce will apply function to each element in
iterable along with the sum so far and create a
cumulative sum of the results

• function must take two parameters
• If initializer is provided, initializer will stand as the

first argument in the sum
• Unfortunately in python 3 reduce() requires an import

statement
• from functools import reduce

13

Reduce Example

Example

1
2
3
4
5
6
7

nums = [1, 2, 3, 4, 5, 6, 7, 8]

nums = list(reduce(lambda x, y : (x, y), nums))

Print(nums) #(((((((1, 2), 3), 4), 5), 6), 7), 8)

14

Reduce Problem

Goal: given a list of numbers I want to find the
average of those numbers in a few lines using
reduce()

For Loop Method:
- sum up every element of the list
- divide the sum by the length of the list

15

Reduce Problem

Solution

1

2
3
4

nums = [92, 27, 63, 43, 88, 8, 38, 91, 47, 74, 18, 16,
 29, 21, 60, 27, 62, 59, 86, 56]

sum = reduce(lambda x, y : x + y, nums) / len(nums)

16

MapReduce

A framework for processing huge datasets on certain
kinds of distributable problems

Map Step:
- master node takes the input, chops it up

into smaller sub-problems, and
distributes those to worker nodes.

- worker node may chop its work into yet
small pieces and redistribute again

17

MapReduce

Reduce Step:
- master node then takes the answers to

all the sub-problems and combines them in a
way to get the output

18

MapReduce

Problem: Given an email how do you tell if it is
spam?

- Count occurrences of certain words. If
they occur too frequently the email is
spam.

19

MapReduce

map_reduce.py

1
2
3
4
5

6
7
8
9
1
0

email = ['the', 'this', 'annoy', 'the', 'the', 'annoy']

def inEmail (x):
 if (x == "the"):
 return 1;
 else:
 return 0;

map(inEmail, l) #[1, 0, 0, 0, 1, 1, 0]

reduce((lambda x, xs: x + xs), map(inEmail, email)) #3

20

List Comprehensions

 [expression for element in list]

• Applies the expression to each element in
the list

• You can have 0 or more for or if statements
• If the expression evaluates to a tuple it must

be in parenthesis

21

List Comprehensions

1
2
3
4
5
6
7
8
9
10
11
12
13
14

>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
 [6, 12, 18]

>>> [3*x for x in vec if x > 3]
 [12, 18]

>>> [3*x for x in vec if x < 2]
 []

>>> [[x,x**2] for x in range(10)]
 [[0, 0], [1, 1], [2, 4], [3, 9]]

>>> [x, x**2 for x in vec]
 # error - parens required for tuples

22

List Comprehensions
You can do most things that you can do with map, filter
and reduce more nicely with list comprehensions

How can we find out how many times ‘a’ appears in the
list named email?

1
2
3
4
5
6

>>> email = ['once', 'upon', 'a', 'time', 'in', 'a',
'far', 'away']

>>> len([1 for x in email if x == 'a'])

>>> 2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

