
Exploration Seminar 4

Basics
Special thanks to Scott Shawcroft, Ryan Tucker, Paul Beck and Roy McElmurry for their work on

these slides.
Except where otherwise noted, this work is licensed under:

http://creativecommons.org/licenses/by-nc-sa/3.0

2

Python!

• Created in 1991 by Guido van Rossum (now at
Google)
– Named for Monty Python

• Useful as a scripting language
– script: A small program meant for one-time use
– Targeted towards small to medium sized projects

• Used by:
– Google, Yahoo!, Youtube
– Many Linux distributions
– Games and apps (e.g. Eve Online)

3

Interpreted Languages

• interpreted
– Not compiled like Java
– Code is written and then directly executed by an

interpreter
– Type commands into interpreter and see immediate

results

Computer
Runtime

Environment
CompilerCodeJava:

ComputerInterpreterCodePython:

4

The print Statement
print("text”)
print() (a blank line)

– Escape sequences such as \" are the same as in Java
– Strings can also start/end with '

swallows.py

1
2
3
4

print("Hello, world!”)
print()
print("Suppose two swallows \"carry\" it together.”)
Print('African or "European" swallows?’)

5

Comments

comment text (one line)

swallows2.py

1
2
3
4
5
6

Suzy Student, CSE 142, Fall 2097
This program prints important messages.
Print("Hello, world!”)
Print() # blank line
Print("Suppose two swallows \"carry\" it together.”)
Print('African or "European" swallows?’)

6

Expressions

• Arithmetic is very similar to Java
– Operators: + - * / % (plus ** for exponentiation)
– Precedence: () before ** before * / % before + -
– Integers vs. real numbers

>>> 1 + 1
2
>>> 1 + 3 * 4 - 2
11
>>> 7 / 2
3
>>> 7.0 / 2
3.5

7

Variables and Types

• Declaring: same syntax as assignment; no type is
written

• Types: Looser than Java
– Variables can change types as a program is running

• Operators: no ++ or --
Java Python

int x = 2;
x++;
System.out.println(x);

x = x * 8;
System.out.println(x);

double d = 3.2;
d = d / 2;
System.out.println(d);

x = 2
x = x + 1
print(x)

x = x * 8
print(x)

d = 3.2
d = d / 2
print(d)

Value Java type Python

42 int int

3.14 double float

"ni!" String str

8

String Multiplication

• Python strings can be multiplied by an integer.
– Result: many copies of the string concatenated

together

>>> "hello" * 3
"hellohellohello"

>>> 10 * "yo “
yo yo yo yo yo yo yo yo yo yo

>>> 2 * 3 * "4”
444444

9

String Concatenation

• Integers and strings cannot be concatenated in
Python.
Workarounds:
– str(value) - converts a value into a string
– print value, value - prints value twice, separated by

space
>>> x = 4
>>> "Thou shalt not count to " + x + "."
TypeError: cannot concatenate 'str' and 'int' objects

>>> "Thou shalt not count to " + str(x) + "."
Thou shalt not count to 4.

>>> x + 1, "is out of the question."
5 is out of the question.

10

The for Loop
for name in range([min,] max [, step]):
 statements

– Repeats for values min (inclusive) to max (exclusive)
• min and step are optional (default min 0, step 1)

>>> for i in range(4):
... print(i)
0
1
2
3
>>> for i in range(2, 5):
... print(i)
2
3
4
>>> for i in range(15, 0, -5):
... print(i)
15 10 5

11

Functions

• Function: Equivalent to a static method in Java.

def name():
 statement
 statement
 ...
 statement

– 'main' code (not an actual method) appears below
functions

– Statements inside a function must be indented

hello2.py

1
2
3
4
5
6
7
8

Prints a helpful message.
def hello():
 print("Hello, world!”)
 print("How are you?”)

main (calls hello twice)
hello()
hello()

12

Parameters
def name(parameter, parameter, ...,

parameter):
 statements

– Parameters are declared by writing their names (no
types)

>>> def print_many(word, n):
... for i in range(n):
... print(word)

>>> print_many("hello", 4)
hello
hello
hello
hello

13

Default Parameter Values
def name(parameter=value, ...,

parameter=value):
 statements

– Can make parameter(s) optional by specifying a
default value

>>> def print_many(word, n=1):
... for i in range(n):
... print(word)

>>> print_many("shrubbery")
shrubbery
>>> print_many("shrubbery", 4)
shrubbery
shrubbery
shrubbery
shrubbery

14

Returning Values
def name(parameters):
 statements
 ...
 return value

>>> def ftoc(temp):
... tempc = 5.0 / 9.0 * (temp - 32)
... return tempc

>>> ftoc(98.6)
37.0

15

DrawingPanel

• Use instructor-provided drawingpanel.py file

• At the top of your program, write:
– from drawingpanel import *

• Panel's canvas field behaves like Graphics g in Java

16

DrawingPanel Example

draw1.py

1
2
3
4
5

from drawingpanel import *

panel = DrawingPanel(400, 300)
panel.set_background("yellow")
panel.canvas.create_rectangle(100, 50, 200, 300)

17

Colors and Fill

• Python doesn't have fillRect, fillOval, or
setColor.

– Instead, pass outline and fill colors when drawing a
shape.

– List of all color names: http://wiki.tcl.tk/16166
– Visual display of all colors

●drawcolors.py

1
2
3
4

5
6

from drawingpanel import *

panel = DrawingPanel(400, 300)
panel.canvas.create_rectangle(100, 50, 200, 200,
 outline="red", fill="yellow")
panel.canvas.create_oval(20, 10, 180, 70,
fill="blue")

http://wiki.tcl.tk/16166
http://www.cs.washington.edu/education/courses/cse142/08su/python/python_colors.png

18

Drawing Methods

– Notice, methods take x2/y2 parameters, not
width/height

Java Python

drawLine panel.canvas.create_line(x1, y1, x2, y2)
drawRect,
fillRect

panel.canvas.create_rectangle(x1, y1, x2, y2)

drawOval,
fillOval

panel.canvas.create_oval(x1, y1, x2, y2)

drawString panel.canvas.create_text(x, y, text="text")

setColor (see next slide)
setBackgro
und

panel.set_background(color)

19

Math commands
from math import *

Function name Description

ceil(value) rounds up

cos(value) cosine, in radians

degrees(value) convert radians to degrees

floor(value) rounds down

log(value, base) logarithm in any base

log10(value) logarithm, base 10

max(value1,
value2, ...)

largest of two (or more)
values

min(value1,
value2, ...)

smallest of two (or more)
values

radians(value) convert degrees to radians

round(value) nearest whole number

sin(value) sine, in radians

sqrt(value) square root

tan(value) tangent

Constant Description

e 2.7182818...

pi 3.1415926...

20

Strings

• Accessing character(s):
variable [index]
variable [index1:index2]

– index2 is exclusive
– index1 or index2 can be

omitted (end of string)

index 0 1 2 3 4 5 6 7

or -8 -7 -6 -5 -4 -3 -2 -1

charact
er

P . D i d d y

>>> name = "P. Diddy"
>>> name[0]
'P'
>>> name[7]
'y'
>>> name[-1]
'y'
>>> name[3:6]
'Did'
>>> name[3:]
'Diddy'
>>> name[:-2]
'P. Did'

21

String Methods

>>> name = "Martin Douglas Stepp"
>>> name.upper()
'MARTIN DOUGLAS STEPP'
>>> name.lower().startswith("martin")
True
>>> len(name)
20

Java Python

length len(str)

startsWith, endsWith startswith, endswith

toLowerCase, toUpperCase upper, lower,
isupper, islower,
capitalize, swapcase

indexOf find

trim strip

22

input : Reads a string from the user's keyboard.
– reads and returns an entire line of input

• to read a number, cast the result of raw_input to an
int

input

>>> name = input("Howdy. What's yer name? ")
Howdy. What's yer name? Paris Hilton

>>> name
'Paris Hilton'

23

if/else
if condition:
 statements
elif condition:
 statements
else:
 statements

– Example:
gpa = input("What is your GPA? ")
if gpa > 3.5:
 print("You have qualified for the honor roll.”)
elif gpa > 2.0:
 print("Welcome to Mars University!”)
else:
 print("Your application is denied.”)

24

if ... in
if value in sequence:
 statements

– The sequence can be a range, string, tuple, or list

– Examples:

x = 3
if x in range(0, 10):
 print("x is between 0 and 9”)

name = input("What is your name? ")
name = name.lower()
if name[0] in "aeiou":
 print("Your name starts with a vowel!”)

25

Logical Operators

Operator Example Result

and (2 == 3) and (-1 < 5) False

or (2 == 3) or (-1 < 5) True

not not (2 == 3) True

Operator Meaning Example Result

== equals 1 + 1 == 2 True

!= does not equal 3.2 != 2.5 True

< less than 10 < 5 False

> greater than 10 > 5 True

<= less than or equal to 126 <= 100 False

>= greater than or equal to 5.0 >= 5.0 True

26

while Loops

while test:
 statements

>>> n = 91
>>> factor = 2 # find first factor of n

>>> while n % factor != 0:
... factor += 1
...

>>> factor
7

27

bool

• Python's logic type, equivalent to boolean in Java
– True and False start with capital letters

>>> 5 < 10
True

>>> b = 5 < 10
>>> b
True

>>> if b:
... print("The bool value is true”)
...
The bool value is true

>>> b = not b
>>> b
False

28

Random Numbers

from random import *

randint(min, max)
– returns a random integer in range [min, max]

inclusive

choice(sequence)
– returns a randomly chosen value from the given

sequence
• the sequence can be a range, a string, ...

>>> from random import *
>>> randint(1, 5)
2
>>> randint(1, 5)
5
>>> choice(range(4, 20, 2))
16
>>> choice("hello")
'e'

29

Tuple
tuple_name = (value, value, ..., value)

– A way of "packing" multiple values into one variable

name, name, ..., name = tuple_name
– "unpacking" a tuple's contents into multiple variables

>>> x = 3
>>> y = -5
>>> p = (x, y, 42)
>>> p
(3, -5, 42)

>>> a, b, c = p
>>> a
3
>>> b
-5
>>> c
42

30

Tuple as Parameter/Return
def name((name, name, ..., name), ...):
 statements

– Declares tuple as a parameter by naming each of its
pieces

return (name, name, ..., name)

>>> def slope((x1, y1), (x2, y2)):
... return (y2 - y1) / (x2 - x1)

>>> p1 = (2, 5)
>>> p2 = (4, 11)
>>> slope(p1, p2)
3

>>> def roll2():
... die1 = randint(1, 6)
... die2 = randint(1, 6)
... return (die1, die2)

>>> d1, d2 = roll2()

31

lists

• like Java’s arrays (but way cooler)

• declaring:

• name = [value1, value2, ...] or

• name = [value] * length

• accessing/modifying:

• name[index] = value

32

list indexing

index 0 1 2 3 4 5 6 7

value 9 14 12 19 16 18 24 15

index -8 -7 -6 -5 -4 -3 -2 -1

lists can be indexed with positive or
negative numbers (we’ve seen this
before!)

33

list slicing

name[start:end] # end is exclusive
name[start:] # to end of list
name[:end] # from start of list
name[start:end:step] # every step'th value

• lists can be printed (or converted to string
with str())

• len(list) returns a list’s length

File Processing

35

Reading Files

name = open("filename")
– opens the given file for reading, and returns a file

object

name.read() - file's entire contents as a
string

>>> f = open("hours.txt")
>>> f.read()
'123 Susan 12.5 8.1 7.6 3.2\n
456 Brad 4.0 11.6 6.5 2.7 12\n
789 Jenn 8.0 8.0 8.0 8.0 7.5\n'

36

Line-based File Processing

name.readline() - next line from file as a string
– Returns an empty string if there are no more lines in

the file

name.readlines() - file's contents as a list of lines
– (we will discuss lists in detail next week)

>>> f = open("hours.txt")
>>> f.readline()
'123 Susan 12.5 8.1 7.6 3.2\n'

>>> f = open("hours.txt")
>>> f.readlines()
['123 Susan 12.5 8.1 7.6 3.2\n',
'456 Brad 4.0 11.6 6.5 2.7 12\n',
'789 Jenn 8.0 8.0 8.0 8.0 7.5\n']

37

Line-based Input Template

• A file object can be the target of a for ... in loop

• A template for reading files in Python:

for line in open("filename"):
 statements

>>> for line in open("hours.txt"):
... print(line.strip()) # strip() removes \n

123 Susan 12.5 8.1 7.6 3.2
456 Brad 4.0 11.6 6.5 2.7 12
789 Jenn 8.0 8.0 8.0 8.0 7.5

38

Exercise

• Write a function stats that accepts a file name as a
parameter and that reports the longest line in the
file.
– example input file, vendetta.txt:

Remember, remember the 5th of November.
The gunpowder, treason, and plot.
I know of no reason why the gunpowder treason
should ever be forgot.

– expected output:
>>> stats(”vendetta.txt")
longest line = 46 characters
I know of no reason why the gunpowder treason

39

Exercise Solution
def stats(filename):
 longest = ""
 for line in open(filename):
 if len(line) > len(longest):
 longest = line

 print("Longest line = ", len(longest))
 print(longest)

40

Writing Files
name = open("filename", "w") # write
name = open("filename", "a") # append

– opens file for write (deletes any previous contents) , or
– opens file for append (new data is placed after

previous data)

name.write(str) - writes the given string to the
file

name.close() - closes file once writing is done

>>> out = open("output.txt", "w")
>>> out.write("Hello, world!\n")
>>> out.write("How are you?")
>>> out.close()

>>> open("output.txt").read()
'Hello, world!\nHow are you?'

	Exploration Seminar 4
	Python!
	Interpreted Languages
	The print Statement
	Comments
	Expressions
	Variables and Types
	String Multiplication
	String Concatenation
	The for Loop
	Functions
	Parameters
	Default Parameter Values
	Returning Values
	DrawingPanel
	DrawingPanel Example
	PowerPoint Presentation
	Drawing Methods
	Math commands
	Strings
	String Methods
	input
	if/else
	if ... in
	Logical Operators
	while Loops
	bool
	Random Numbers
	Tuple
	Tuple as Parameter/Return
	Slide 31
	Slide 32
	Slide 33
	File Processing
	Reading Files
	Line-based File Processing
	Line-based Input Template
	Exercise
	Exercise Solution
	Writing Files

