
Video Games

Writing Games with Pygame

Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.

Except where otherwise noted, this work is licensed under:
http://creativecommons.org/licenses/by-nc-sa/3.0

Video Games

Writing Games with Pygame

3

Inheritance

class name(superclass):
statements

– Example:
class Point3D(Point): # Point3D extends Point

z = 0 # add a z field

...

• Python also supports multiple inheritance

class name(superclass, ..., superclass):
statements

4

Calling Superclass Methods

• methods: class.method(parameters)

• constructors: class.__init__(parameters)

class Point3D(Point):

z = 0

def __init__(self, x, y, z):

Point.__init__(self, x, y)

self.z = z

def translate(self, dx, dy, dz):

Point.translate(self, dx, dy)

self.z += dz

5

Pygame

• A set of Python modules to help write games

• Deals with media (pictures, sound) nicely

• Interacts with user nicely (keyboard, joystick, mouse input)

6

Installing Pygame

• Go to the Pygame web site: http://www.pygame.org/

– click 'Downloads' at left

– Windows users: under the 'Windows' section,

• click the most recent version
(as of this quarter, that is pygame-1.9.1.win32-py3.1.msi)

– Mac users: under the 'Macintosh' section,

• click the most recent version
(as of this quarter, pygame-1.9.1release-py3.1-macosx10.5.zip)

– save file to hard disk

– run file to install it

http://www.pygame.org/

7

Other Resources

• Pygame documentation: http://www.pygame.org/docs/

– lists every class in Pygame and its useful behavior

• The Application Programming Interface (API)

– specifies the classes and functions in package

• Search for tutorials

• Experiment! (Not kidding)

http://www.pygame.org/docs/
http://www.pygame.org/docs/ref/index.html
http://www.linuxjournal.com/article/7694

8

What is a game?

• Game State.

– In Java, what‟s the “state” of an object?

• What‟s the state of chess?

• What type of „objects‟ would we want if we were to
implement chess?

9

Our Goal: Starcraft II in PyGame

10

Starcraft II

• Ok… not all of it. But we‟ll move a probe around.

11

Initializing a Game

• Import Pygame's relevant classes:

import sys

from pygame import *

from pygame.locals import *

from pygame.sprite import *

• Initialize Pygame at the start of your code:

pygame.init()

• Note: Because you‟ve imported pygame as above, you are
not technically required to have pygame.init()

12

Creating a Window

name = display.set_mode((width, height)[, options])

Example:
screen = display.set_mode((640, 480))

• Options:
FULLSCREEN - use whole screen instead of a window
DOUBLEBUF - display buffering for smoother animation
OPENGL - 3D acceleration (don't use unless needed)

Example:

screen = display.set_mode((1024, 768), FULLSCREEN)

13

Initial Game Program

• An initial, incomplete game file using Pygame:

whack_a_mole.py

1
2
3

4
5
6
7
8

9
10
11
12

import pygame

from pygame import *

from pygame.locals import *

from pygame.sprite import *

pygame.init()

set window title

display.set_caption("Whack-a-Mole")

screen = display.set_mode((640, 480))

14

Sprites

Next we must define all the sprites found in the game.

• sprite: A character, enemy, or other object in a game.

– Sprites can move, animate, collide, and be acted upon

– Sprites usually consist of an image to draw on the screen and
a bounding rectangle indicating the sprite's collision area

• Pygame sprites are objects that extend the Sprite class.

15

Programming a Sprite

class name(Sprite):
constructor

def __init__(self):

Sprite.__init__(self)

self.image = image.load("filename")
self.rect = self.image.get_rect()

other methods (if any)

– Pre-defined fields in every sprite:

self.image - the image or shape to draw for this sprite

• images are Surface objects, loaded by image.load function

self.rect - position and size of where to draw the image

16

Sprite Example

A class for a probe to mine minerals!

class Probe(Sprite):

def __init__(self):

Sprite.__init__(self)

self.image = image.load(“probe.png")

self.rect = self.image.get_rect()

Note: The image and the rect are part of the
state.

What are some other things that could be part
of the state?

17

Sprite Groups

name = Group(sprite1, sprite2, ...)

– To draw sprites on screen, they must be put into a Group

Example:

protoss = Probe() # create a Mole object

sprites = Group(protoss)

Group methods:
– draw(surface) - draws all sprites in group onto a surface
– update() - updates every sprite's appearance

18

Surface

• In Pygame, every 2D object is an object of type Surface

– The screen object returned from display.set_mode(),

each game character, images, etc.

– Useful methods in each Surface object:

Method Name Description

fill((red, green, blue)) paints surface in given color (rgb 0-255)

get_width(),
get_height()

returns the dimensions of the surface

get_rect() returns a Rect object representing the

x/y/w/h bounding this surface

blit(src, dest) draws this surface onto another surface

19

Drawing and Updating

• All Surface and Group objects have an update method that

redraws that object when it moves or changes.

• Once sprites are drawn onto the screen, you must call
display.update() to see the changes

protoss = Probe() # create a Probe object

sprites = Group(protoss)

sprites.update() # Calls the update method

sprites.draw(screen)

display.update() # redraw to see the sprites

20

Game Program
StarCraft_II.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

import sys
from pygame import *
from pygame.locals import *
from pygame.sprite import *

class Probe(Sprite):
def __init__(self):

Sprite.__init__(self)
self.image = image.load("probe.png")
self.rect = self.image.get_rect()

MAIN
init()
display.set_caption('Starcraft II')
window = display.set_mode((600,600))

protoss = Probe()
sprites = Group(protoss)
window.fill((255,255,255))

sprites.draw(window)
display.update()

21

Event-Driven Programming

• event: A user interaction with the game, such as a mouse
click, key press, clock tick, etc.

• event-driven programming: Programs with an interface
that waits for user events and responds to those events.

• Pygame programs need to write an event loop that waits for
a Pygame event and then processes it.

22

Event Loop Template

after Pygame's screen has been created

while True:

name = event.wait() # wait for an event

if name.type == QUIT:

pygame.quit() # exit the game

break

elif name.type == type:
code to handle another type of events

...

code to update/redraw the game between events

(like this)
sprites.update()

sprites.draw(window)

display.update()

23

Event Loop 2

after Pygame's screen has been created

while True:

ev = event.poll() # Grabs an event

if ev != NOEVENT: # If there is an event

do stuff here
Check for special events…

sprites.update()

sprites.draw(window)

display.update()

• Note that the sprites‟ update method gets called more than
in the previous example even if no events happen

24

Example

• Let‟s look at the code for the difference between the two
event loops

25

Mouse Clicks

• When the user presses a mouse button, you get events with
a type of MOUSEBUTTONDOWN and MOUSEBUTTONUP.

– mouse movement is a MOUSEMOTION event

• mouse.get_pos() returns the mouse cursor's current
position as an (x, y) tuple

Example:
ev = event.wait()

if ev.type == MOUSEBUTTONDOWN:

user pressed a mouse button

x, y = mouse.get_pos()

26

Mouse Clicks

• You can also do this through events.

• http://www.pygame.org/docs/ref/event.html
after Pygame's screen has been created

ev = event.poll() # Grabs an event

if ev != NOEVENT: # If there is an event

info = ev.dict # Gives a dict of information

x, y = info[‘pos’]

http://www.pygame.org/docs/ref/event.html
http://www.pygame.org/docs/ref/event.html

27

Key Presses

• When the user presses a keyboard key, you get events with
a type of KEYDOWN and then KEYUP.

– event contains .key field representing what key was pressed

– Constants for different keys: K_LEFT, K_RIGHT, K_UP,
K_DOWN, K_a - K_z, K_0 - K_9, K_F1 - K_F12, K_SPACE,
K_ESCAPE, K_LSHIFT, K_RSHIFT, K_LALT, K_RALT,
K_LCTRL, K_RCTRL, ...

Example:
ev = event.wait()

if ev.type == KEYDOWN:

if ev.key == K_ESCAPE:

pygame.quit()

28

What we want

• We have a sprite on our screen and we have a main loop
that doesn‟t really do anything.

• We want to make the sprite move to a location that we
click on.

• What do we need to add to the state of our Probe in order
to accomplish it?

29

Collision Detection

• collision detection: Noticing whether one sprite or object
has touched another, and responding accordingly.

– A major part of game programming

• In Pygame, collision detection is done by examining sprites,
rectangles, and points, and asking whether they intersect.

30

Rect

• a 2D rectangle associated with each sprite (.rect field)

– Fields: top, left, bottom, right, center, centerx,
centery, topleft, topright, bottomleft,
bottomright, width, height, size, ...

Method Name Description

collidepoint(p) returns True if this Rect contains the point

colliderect(rect) returns True if this Rect contains the rect

contains(rect) returns True if this Rect contains the other

move(x, y) moves a Rect to a new position

inflate(dx, dy) grow/shrink a Rect in size

union(rect) joins two Rects

31

Collision Example

• Detecting whether a sprite touches the mouse cursor:

ev = event.wait()

if ev.type == MOUSEBUTTONDOWN:

if sprite.rect.collidepoint(mouse.get_pos()):
then the mouse cursor touches the sprite

...

• Exercise: Detect when the user clicks on the Probe. Make
the mole run away by fleeing to a new random location
from (0, 0) to (600, 400).

32

Exercise Solution

class Probe(Sprite):

def __init__(self):

Sprite.__init__(self)

self.image = image.load(“probe.png")

self.rect = self.image.get_rect()

def flee(self):

self.rect.left = randint(0, 600) # random location

self.rect.top = randint(0, 400)

...

while True:

ev = event.wait() # wait for an event

if ev.type == QUIT:

pygame.quit()

break

elif ev.type == MOUSEBUTTONDOWN:

if probe.rect.collidepoint(mouse.get_pos()):

probe.flee()

...

