
Built-In Functions

Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.
Except where otherwise noted, this work is licensed under:

http://creativecommons.org/licenses/by-nc-sa/3.0

2

Functions as parameters

•  Have you ever wanted to pass an entire function as a
parameter

•  Python has functions as first-class citizens, so you can do
this

•  You simply pass the functions by name

3

Properties of Functions

Field Description

__name__ This is the name of the function. This
only have a meaningful value is the

function is defined with “def”.

__class__ This is a reference to the class a method
belongs to.

__code__ This is a reference to the code object
used in the implementation of python

__doc__ This is the documentation string for the
function.

4

inspect!

Field Description

getdoc(x) Returns a pretty version of the docstring
for the give object.

getcomments(x) Returns the comments that appear just
above the given function/class/module.

getsource(x) Returns the source code for the given
function/class/module

getmembers(x) Returns a list of the members (fields and
methods) of a class

•  A useful class for inspecting functions and classes.
–  from inspect import *

5

Function Parameter Example
ex.py

1
2
3
4
5
6
7
8
9
0
1
2
3

def mult_2(x):
 return x * 2

def add_2(x):
 return x + 2

def opp_on_item(item, func):
 return func(item)

#main
opp_on_item(12, mult_2) #result: 24
opp_on_item(12, add_2) #result: 14

6

Lambda

•  Sometimes you need a simply arithmetic function
•  Its silly to write a method for it, but redundant not too
•  With lambda we can create quick simple functions
•  Facts

–  Lambda functions can only be comprised of a single
expression

–  No loops, no calling other methods
–  Lambda functions can take any number of variables

Syntax:

 lambda param1,…,paramn : expression

7

Lambda Syntax
lambda.py

1
2
3
4
5
6
7
8
9
0
1
2
3

#Example 1
square_func = lambda x : x**2
square_func(4) #return: 16

#Example 2
close_enough = lambda x, y : abs(x – y) < 3
close_enough(2, 4) #return: True

#Example 3
def get_func(n) :
 return lambda x : x * n + x % n
my_func = get_func(13)
my_func(4) #return: 56

8

operator!

•  Most of the built-in functions (len, +, *, <) can be accessed
through the operator module

•  Need to import the operator module
–  from operator import *!

Operator Function

- sub(x, y)

+ add(x, y)

* __mul__(self, other)

Operator Function

- neg(x)

+ pos(x)

Operator Function

== eq(x,y)

!= ne(x, y)

< lt(x, y)

> gt(x, y)

<= le(x, y)

>= ge(x, y)

9

Partially Instantiated Functions

•  We have seen that we can create lambda functions for quick
functions on the go

•  We have also seen that we can use the built in operators
through the operator class

•  What we would like to do is use the built in operators with a
silly lambda function

•  We can do this by partially instantiating function with the
partial function from the functools package
–  You supply some of the parameters and get a function back

the needs the rest of the parameters in order to execute

10

partial

partial.py

1
2
3
4
5
6
7
8
9
0

def mult1(x):
 return 2 * x
mult2 = lambda x : 2 * x
mult3 = partial(mul, 2)

x = 10

print(mult1(5)); #10
print(mult2(5)); #10
print(mult3(5)); #10

11

Higher-Order Functions

•  A higher-order function is a function that takes another
function as a parameter

•  They are “higher-order” because it’s a function of a function
•  Examples

–  Map
–  Reduce
–  Filter

•  Lambda works great as a parameter to higher-order
functions if you can deal with its limitations

12

Transform Example

•  Let’s write a method called transform that takes a list and a
function as parameters and applies the function to each
element of the list

 transform.py

1
2
3
4
5
6
7

def mult_2(x):
 return x * 2
...
#Main
x = [1, 2, 3]
transform(x, mult_2)
print(x) #[2, 4, 6]

13

Transform Solution

transform.py

1
2
3
4
5
6
7
8
9

def transform(arr, func):
 for i in range(len(arr)):
 arr[i] = func(arr[i])

x = [1, 2, 3]
transform(x, mult_2)
print(x) #[2, 4, 6]

