
Classes

Special thanks to Roy McElmurry, Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.
Except where otherwise noted, this work is licensed under:

http://creativecommons.org/licenses/by-nc-sa/3.0

2

Exceptions
 raise type(message)
 raise Exception(message)

Exceptions
AssertionError

TypeError

NameError

ValueError

IndexError

SyntaxError

ArithmeticError

http://docs.python.org/library/exceptions.html#bltin-exceptions

3

Class Syntax
•  Recall the syntax for making a basic class

example.py

1
2
3
4
5
6
7
8
9

class ClassName:
 def __init__(self, params, ...):
 self.field1 = value
 self.fieldn = value
 #Your code here
 def other_methods(self, params, ...):
 #your code here

4

Inheritance
•  Python has multiple inheritance
•  This means that we can create a class that subclasses

several classes
•  Python makes an effort to mix super classes

–  Searches super classes from left to right
–  We can disambiguate if there are problems with this

example.py

1
2

class ClassName(SuperClass1, SuperClass2, ...):
 def __init__(self, params, ...):

5

Commenting Your Classes
•  Classes and functions have a built-in field called __doc__
•  We can use this as a way to get more bang for our

comments
•  These __doc__ fields could be used like JavaDoc

example.py

1
2
3
4

class Point():
 “““This class defines a point in 2D space”””
 def __init__(self, x, y):
 “““Post: returns a Point with the given x and y fields”””

6

Name Mangling
•  Python does not have private methods
•  Python does have name mangling, any method that starts

with 2+ underscores and does not end in 2+ underscores
with be renamed to _classname__method

example.py

1
2
3
4
5
6
7
8
9

class Foo():
 def __init__(self):
 self.__helper()
 def __helper(self):
 print(“sneaky”)

x = Foo() #output: sneaky
x._Foo__helper() #output: sneaky
x.__helper() #output: AttributeError

7

Static Fields
•  There is a subtle difference between declaring fields in the

class and declaring them in the constructor
•  Fields defined in the class can be used as static variables,

meaning they belong to the class as a whole

example.py

1
2
3
4
5
6
7

class MovieTicket():
 basePrice = 10
 def __init__(self, fee):
 self.price = self.basePrice + fee
x = MovieTicket(5)
print(x.price) #result: 15
print(MovieTicket.basePrice) #result: 10

8

Static Methods
•  We can use decorators to tell our function to be static,

meaning they belong to the class, not an instance

example.py

1
2
3
4
5
6
7
8
9

10
11

class Point():
 def __init__(self, x, y):
 self.x = x
 self.y = y
 @staticmethod
 def distance(p1, p2):
 d = sqrt((p1.x - p2.x)**2 + (p1.y - p2.y)**2)
 return d
x = Point(0, 0)
y = Point(0, 5)
print(Point.distance(x, y)) #result: 5

9

Class Methods
•  A class method receives a reference to the class instead of a

reference to an instance
•  You can use this class parameter (cls) to reference the

static variables or methods
•  One use of this ability is writing documentation methods

10

Class Methods
example.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14

class Point():
 """This class defines a point in 2D space."""
 def __init__(self, x, y):
 """Post: returns a Point with coordinates (x,y)"""
 self.x = x
 self.y = y
 @classmethod
 def help(cls):
 for attr in cls.__dict__:
 print(str(attr) + ": " + cls.__dict__
 [attr].__doc__)#result: 5

x = Point(0, 0)
x.help()

11

__str__()
•  We already know about the __str__() method that allows a

class to convert itself into a string

rectangle.py

1
2
3
4
5
6
7
8
9

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __str__(self):
 return "(" + str(self.x) + ", " +
 str(self.y) + ")"

12

First Class Citizens
•  For built-in types like ints and strings we can use

operators like + and *.
•  Our classes so far were forced to take back routes and use

methods like add() or remove()
•  Python is super cool, in that it allows us to define the usual

operators for our class
•  This brings our classes up to first class citizen status just

like the built in ones

13

Underscored methods
•  There are many other underscored methods that allow the

built-in function of python to work
•  Most of the time the underscored name matches the built-in

function name

Built-In Class Method
str() __str__()

len() __len__()

abs() __abs__()

14

Underscored methods
•  There are underscore methods that you can implement in

order to define logical operations and arithmetic operations

Operator Class Method
- __sub__(self,other)

+ __add__(self, other)

* __mul__(self, other)

/ __truediv__(self, other)

Binary Operators Comparison Operators

Unary Operators

Operator Class Method
- __neg__(self)

+ __pos__(self)

Operator Class Method
== __eq__(self,other)

!= __ne__(self, other)

< __lt__(self, other)

> __gt__(self, other)

<= __le__(self, other)

>= __ge__(self, other)

N/A __nonzero__(self)

http://docs.python.org/reference/datamodel.html#sequence-types

15

Vector Class
Lets write a class that represents a Vector. A Vector is a Point

that has some extra functionality. We should be able to add
and subtract two Vectors, determine if two Vectors are
equal. We should be able to multiply a Vector by a scalar
and ask what the Vector’s length is as an integer. In
addition, Vectors should have these methods and fields.

Method/Field Functionality

origin The origin as a field

isDiagonalInPointSet() Returns whether this Vector lies
on the diagonal and is contained
in the given point set

slope() Returns the slope between the
two given Vectors

