
1

CSE 143
Lecture 23

Polymorphism; the Object class

read 9.2 - 9.3

slides created by Marty Stepp and Ethan Apter

http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

2

Polymorphism

polymorphism: Ability for the same code to be used with different
types of objects and behave differently with each.

System.out.println can print any type of object.

Each one displays in its own way on the console.

A Scanner can read data from any kind of InputStream.

Every kind of OutputStream can write data, though they might write
this to different kinds of sources.

3

Inheritance in WoW

Gear

Chest HandsHelmShoulders Pants

ChainmailChestLeatherChestClothChest

WoolChest

PlateChest

RuneclothChest NetherweaveChest CopperPlateChest AdamantiteChest

4

Coding with polymorphism

A variable of type T can refer to an object of any subclass of T.

Chest chestpiece = new PlateChest();

Gear loot = new RuneclothChest();

You can call any methods from Chest on chestpiece.

You can not call any methods specific to PlateChest (e.g. smelt).

When a method is called on chestpiece, it behaves as a PlateChest.

System.out.println(chestpiece.getArmor()); // 742

System.out.println(chestpiece.reqLevel()); // 56

5

Polymorphism/parameters
public class GearMain {

 public static void main(String[] args) {

 PlateChest plate = new PlateChest();

 CopperChest copper = new CopperPlateChest();

 printInfoPlate(plate);

 printInfoCopper(copper);

 }

}

public static void printInfoPlate(PlateChest loot) {
 System.out.println(”armor = " + loot.getArmor());
 System.out.println(”required level = " + loot.reqLevel());
 System.out.println(”soulbinds = " + loot.canSoulBind());
 System.out.println();
 }

public static void printInfoCopper(CopperPlateChest loot) {
 System.out.println(”armor = " + loot.getArmor());
 System.out.println(”required level = " + loot.reqLevel());
 System.out.println(”soulbinds = " + loot.canSoulBind());
 System.out.println();
 }

6

Polymorphism/parameters

You can pass any subtype of a parameter's type.

public class GearMain {

 public static void main(String[] args) {

 PlateChest plate = new PlateChest();

 CopperChest copper = new CopperPlateChest();

 printInfo(plate);

 printInfo(copper);

 }

 public static void printInfo(Gear loot) {

 System.out.println(”armor = " + loot.getArmor());

 System.out.println(”required level = " + loot.reqLevel());

 System.out.println(”soulbinds = " + loot.canSoulBind());

 System.out.println();

 }

}

OUTPUT:

armor = 100 armor = 110

required level = 10 required level = 14

soulbinds = false soulbinds = true

7

Coding with polymorphism

We can use polymorphism with classes like OutputStream.

Recall methods common to all OutputStreams:

Recall part of the inheritance hierarchy for OutputStream:

Method Description
write(int b) writes a byte
close() stops writing (also flushes)
flush() forces any writes in buffers to be written

OutputStream

FileOutputStream

PrintStream

FilterOutputStream

8

Streams and polymorphism

A variable of type T can refer to an object of any subclass of T.

OutputStream out = new PrintStream(new File("foo.txt"));

OutputStream out2 = new FileOutputStream("foo.txt");

You can call any methods from OutputStream on out.

You can not call methods specific to PrintStream (println).

But how would we call those methods on out if we wanted to?

When out runs a method, it behaves as a PrintStream.

out.write(0); // writes a 0 byte to foo.txt

out.close(); // closes the stream to foo.txt

9

Type-casting objects

To use the object’s behavior we can cast

OutputStream out = new PrintStream(new File("foo.txt"));

((PrintStream) out).println("Hi!");

Casting objects is different than casting primitives.

We're casting an OutputStream reference into a PrintStream
reference.

We're promising the compiler that out refers to a PrintStream
object.

10

Polymorphism examples

You can use the object's extra functionality by casting.

OutputStream out = new PrintStream(new File("foo.txt"));

out.write(0); // ok

out.println("hello"); // compiler error

((PrintStream) out).println("hello"); // ok

out.close(); // ok

You can't cast an object into something that it is not.
Such code might compile, but it will crash at runtime.

OutputStream out2 = new FileOutputStream("foo.txt");

out2.write(0); // ok

out2.println("hello"); // compiler error

((PrintStream) out2).println("hello"); // runtime exception

11

Polymorphism mystery

4-5 classes with inheritance relationships are shown.

A client program calls methods on objects of each class.

Some questions involve type-casting.

Some lines of code are illegal and produce errors.

You must read the code and determine its output or errors.

For output, you must be precise

For errors, you need only say that an error occurred (not identify what kind of error
occurred)

We always place such a question on our final exams!

12

Polymorphism mystery

Steps to solving polymorphism mystery problems:

1. Look at the variable type. (If there is a cast, look at the casted
variable type.) If the variable type does not have the requested
method the compiler will report an error.

2. If there was a cast, make sure the casted variable type is compatible
with the object type (i.e. ensure the object type is a subclass of the
variable type). If they are not compatible, a runtime error
(ClassCastException) will occur.

3. Execute the method in question, behaving like the object type. (The
variable type and casted variable type no longer matter.)

13

Exercise

Assume that the following classes have been declared:

 public class Gear {

 public int getArmor() {

 return 10;

 }

 public void print() {

 System.out.println("Gear");

 }

 }

 public class Chest extends Gear {

 public int getArmor() {

 return 15 + super.getArmor();

 }

 public void print() {

 System.out.print("Chest: ");

 System.out.println(getArmor());

 }

 }

14

Exercise

 public class Helm extends Gear {

 public void print() {

 System.out.print("Helm: ");

System.out.println(getArmor());

 }

 }

 public class PlateChest extends Chest {

 public int getArmor() {

 return 10 + super.getArmor();

 }

 public boolean canSoulBind() {

 return true;

 }

 }

15

Exercise

What happens when the following examples are executed?

• Example 1:

 Helm var1 = new Helm();

 var1.getArmor();

• Example 2:

 Helm var2 = new Helm();

 var2.print();

• Example 3:

 Chest var3 = new Chest();

 var3.getArmor();

16

Exercise

What happens when the following examples are executed?

• Example 4:

 Chest var4 = new PlateChest();

 var4.getArmor();

• Example 5:

 Chest var5 = new PlateChest();

 var5.canSoulBind();

• Example 6:

 Gear var6 = new PlateChest();

 ((Helm) var6).getArmor();

17

A Polymorphism Problem?
What happens if we call do the following,

Baz a = new Baz();

a.method1();

with these as our classes?

public class Foo {

public void method1() {

System.out.println("Foo");

}

}

public class Bar extends Foo {

public void method1() {

System.out.println("Bar");

super.method1();

}

}

public class Baz extends Bar {}

18

method Gear Chest PlateChest Helm
print

getArmor

canSoulBind

Gear Chest PlateChest Helm
Gear Chest:

getArmor()
Chest:
getArmor()

Helm:
getArmor()

10 25 35 10

true

Technique 1: table

Italic - inherited behavior
Bold - dynamic method call

19

Diagram the classes from top (superclass) to bottom.

Technique 2: diagram

Gear

print
getArmor

print
(getArmor)

Helm

(print)
getArmor
canSoulBind

PlateChe
st

print
getArmor

Chest

20

Example 1

Example:

 Chest var4 = new PlateChest();

 var4.getArmor();

Return:

 10 + super.getArmor()

 10 + 25

 35

object

variable

Gear

print
getArmor

print
(getArmor)

Helm

(print)
getArmor
canSoulBind

PlateChe
st

print
getArmor

Chest

21

Example 2

Example:

 Chest var5 = new PlateChest();

 var5.canSoulBind();

Output:

None!

There is an error,

because Chest does not

have a canSoulBind.

variable

object

Gear

print
getArmor

print
(getArmor)

Helm

(print)
getArmor
canSoulBind

PlateChe
st

print
getArmor

Chest

22

Example 3

Example:

 Gear var6 = new PlateChest();

 ((Helm) var6).getArmor();

Output:

None!

There is an error

because a PlateChest is

not a Helm.

object

variable
Gear

print
getArmor

print
(getArmor)

Helm

(print)
getArmor
canSoulBind

PlateChe
st

print
getArmor

Chest

23

The Object class

 read 9.3

24

Class Object

• All types of objects have a superclass named Object.
– Every class implicitly extends Object

• The Object class defines several methods:

– public String toString()
Returns a text representation of the object,
often so that it can be printed.

– public boolean equals(Object other)
Compare the object to any other for equality.
Returns true if the objects have equal state.

25

Object variables

You can store any object in a variable of type Object.

Object o1 = new Point(5, -3);

Object o2 = "hello there";

Object o3 = new Scanner(System.in);

An Object variable only knows how to do general things.

String s = o1.toString(); // ok

int len = o2.length(); // error

String line = o3.nextLine(); // error

You can write methods that accept an Object parameter.

public void checkForNull(Object o) {

 if (o == null) {

 throw new IllegalArgumentException();

 }

}

26

Recall: comparing objects

• The == operator does not work well with objects.
== compares references to objects, not their state.

It only produces true when you compare an object to itself.

Point p1 = new Point(5, 3);

Point p2 = new Point(5, 3);

if (p1 == p2) { // false

 System.out.println("equal");

} ...

x 5 y 3p1

p2
...

x 5 y 3

27

The equals method

The equals method compares the state of objects.

if (str1.equals(str2)) {

 System.out.println("the strings are equal");

}

But if you write a class, its equals method behaves like ==

if (p1.equals(p2)) { // false :-(

 System.out.println("equal");

}

This is the behavior we inherit from class Object.

Java doesn't understand how to compare Points by default.

28

Flawed equals method

We can change this behavior by writing an equals method.

Ours will override the default behavior from class Object.

The method should compare the state of the two objects and return true if they have the
same x/y position.

A flawed implementation:

public boolean equals(Point other) {

 if (x == other.x && y == other.y) {

 return true;

 } else {

 return false;

 }

}

29

Flaws in our method

The body can be shortened to the following:

// boolean zen

return x == other.x && y == other.y;

It should be legal to compare a Point to any object
(not just other Points):

// this should be allowed

Point p = new Point(7, 2);

if (p.equals("hello")) { // false

 ...

equals should always return false if a non-Point is passed.

30

equals and Object

public boolean equals(Object name) {

 statement(s) that return a boolean value ;

}

The parameter to equals must be of type Object.

Object is a general type that can match any object.

Having an Object parameter means any object can be passed.

If we don't know what type it is, how can we compare it?

31

Another flawed version

Another flawed equals implementation:

public boolean equals(Object o) {

 return x == o.x && y == o.y;

}

It does not compile:

Point.java:36: cannot find symbol

symbol : variable x

location: class java.lang.Object

return x == o.x && y == o.y;

 ^

The compiler is saying,
"o could be any object. Not every object has an x field."

32

Type-casting objects

Solution: Type-cast the object parameter to a Point.

public boolean equals(Object o) {

 Point other = (Point) o;

 return x == other.x && y == other.y;

}

Casting objects is different than casting primitives.

Really casting an Object reference into a Point reference.

Doesn't actually change the object that was passed.

Tells the compiler to assume that o refers to a Point object.

33

Casting objects diagram

Client code:

Point p1 = new Point(5, 3);

Point p2 = new Point(5, 3);

if (p1.equals(p2)) {

 System.out.println("equal");

}
public boolean equals(Object o) {
 Point other = (Point) o;
 return x == other.x && y == other.y;
}

x 5 y 3

p1

p2
...

x 5 y 3

o

other

34

Comparing different types

Point p = new Point(7, 2);

if (p.equals("hello")) { // should be false

 ...

}

Currently our method crashes on the above code:

Exception in thread "main"

java.lang.ClassCastException: java.lang.String

 at Point.equals(Point.java:25)

 at PointMain.main(PointMain.java:25)

The culprit is the line with the type-cast:

public boolean equals(Object o) {

 Point other = (Point) o;

35

The instanceof keyword

if (variable instanceof
type) {

 statement(s);

}

Asks if a variable refers
to an object of a given type.

Used as a boolean test.

String s = "hello";

Point p = new Point();

expression result
s instanceof Point false

s instanceof String true

p instanceof Point true

p instanceof String false

p instanceof Object true

s instanceof Object true

null instanceof
String

false

null instanceof
Object

false

36

Final equals method

// Returns whether o refers to a Point object with

// the same (x, y) coordinates as this Point.

public boolean equals(Object o) {

 if (o instanceof Point) {

 // o is a Point; cast and compare it

 Point other = (Point) o;

 return x == other.x && y == other.y;

 } else {

 // o is not a Point; cannot be equal

 return false;

 }

}

	Slide 1
	Polymorphism
	Inheritance in WoW
	Coding with polymorphism
	Polymorphism/parameters
	Polymorphism/parameters
	Coding with polymorphism
	Streams and polymorphism
	Type-casting objects
	Polymorphism examples
	Polymorphism mystery
	Polymorphism mystery
	Exercise
	Exercise
	Exercise
	Exercise
	A Polymorphism Problem?
	Technique 1: table
	Technique 2: diagram
	Example 1
	Example 2
	Example 3
	Slide 23
	Class Object
	Object variables
	Recall: comparing objects
	The equals method
	Flawed equals method
	Flaws in our method
	equals and Object
	Another flawed version
	Type-casting objects
	Casting objects diagram
	Comparing different types
	The instanceof keyword
	Final equals method

