CSE 143
Lecture 16

Iterators; Grammars

reading: 11.1, 15.3, 16.5

A N Y & T

Iterators

reading: 11.1; 15.3; 16.5

Examining sets and maps

e elements of Java sets and Maps can't be accessed by index
— must use a "foreach" loop:

Set<Integer> scores = new HashSet<Integer>();
for (int score : scores) {
System.out.println("The score 1s " + score);

— Problem: foreach is read-only; cannot modify set while looping

for (int score : scores) {
1f (score < 60) {
// throws a ConcurrentModificationException
scores.remove (score) ;

}

Iterators (11.1)

o iterator: An object that allows a client to traverse the

elements of any collection.

— Remembers a position, and lets you:
e get the element at that position
e advance to the next position
e remove the element at that position

list |vaie|3|8(9|7|5]/12 set
size 6 I
tarator current element: 9 tarator current element: "from"
current index: 2 next element: "the"

Iterator methods

hasNext () | returns true if there are more elements to examine

next () returns the next element from the collection (throws a
NoSuchElementException if there are none left to examine)
remove () | removes the last value returned by next () (throws an

IllegalStateException if you haven't called next () yet)

« Iterator interface in java.util

— every collection has an iterator () method that returns an
iterator over its elements

Set<String> set = new HashSet<String> () ;

Iterator<String> itr = set.iterator();

Iterator example

Set<Integer> scores
scores.add(94) ;

new TreeSet<Integer>();

scores.add (38) ; // Jenny

scores.add(87) ;

scores.add (43) ; // Marty

scores.add(72);

Iterator<Integer> itr = scores.iterator();

while (itr.hasNext ()) {
int score = itr.next|();
System.out.println("The score is " + score);

// eliminate any failing grades
1f (score < 60) {
itr.remove () ;

}

}
System.out.println(scores); // [72, 87, 94]

Iterator example 2

Map<String, Integer> scores = new TreeMap<String, Integer>();
scores.put ("Jenny", 8) ;

scores.put ("Stef", 94),

scores.put ("Greg", 87),

scores.put ("Marty", 43);

scores.put ("Angela", 72);

Iterator<String> itr = scores.keySet () .iterator();
while (itr.hasNext ()) {

String name = itr.next ();
int score = scores.get (name);
System.out.println(name + " got " + score);

// eliminate any failing students
1f (score < 60) {
itr.remove () ; // removes name and score

}

}
System.out.println(scores); // {Greg=87, Stef=94, Angela=72}

A surprising example

e \What's bad about this code?

List<Integer> list = new LinkedList<Integer>();

... (add lots of elements) ...

for (int 1 = 0; 1 < list.size(); i++) {
System.out.println(list.get (1i));

data | next data | next data | next
front = 41 42 > -3 || 17 /

element O element 1 element 2

Iterators and linked lists

o [terators are particularly useful with linked lists.

— The previous code is O(N2) because each call on get must start
from the beginning of the list and walk to index 1.

— Using an iterator, the same code is O(N). The iterator
remembers its position and doesn't start over each time.

data | next data | next data | next
front = Ry 42 >l -3 || 17 /
element 0 element 1 element 2

T

current element: -3
current index: 1

iterator

e Modify the Book Search program from last lecture to eliminate
any words that are plural or all-uppercase from the collection.

e Modify the TA quarters experience program so that it
eliminates any TAs with 3 quarters or fewer of experience.

10

ListIterator

add (value) inserts an element just after the iterator's position

hasPrevious () true if there are more elements before the iterator

nextIndex () the index of the element that would be returned the next
time next is called on the iterator

previousIndex () |the index of the element that would be returned the next
time previous is called on the iterator

previous () returns the element before the iterator (throws a
NoSuchElementException if there are none)

set (value) replaces the element last returned by next or previous

with the given value

ListIterator<String> 1i = myList.listIterator();

e lists have a more powerful ListIterator with more methods

— can iterate forwards or backwards
— can add/set element values (efficient for linked lists) 11

Languages and Grammars

Languages and grammars

e (formal) language: A set of words or symbols.

e grammar: A description of a language that describes which
sequences of symbols are allowed in that language.

— describes language syniax (rules) but not semantics (meaning)

— can be used to generate strings from a language, or to determine
whether a given string belongs to a given language

13

Backus-Naur (BNF)

o Backus-Naur Form (BNF): A syntax for describing language
grammars in terms of transformation ru/es, of the form:

<symbol> : := <expression> | <expression> ... | <expression>

— terminal: A fundamental symbol of the language.

— non-terminal: A high-level symbol describing language syntax,
which can be transformed into other non-terminal or terminal
symbol(s) based on the rules of the grammar.

— developed by two Turing-award-winning computer scientists in 1960 to
describe their new ALGOL programming language

14

An example BNF grammar

<s>:i=<n> <v>
<n>::=Marty | Victoria | Stuart | Jessica
<v>::=cried | slept | belched

e Some sentences that could be generated from this grammar:

Marty slept
Jessica belched
Stuart cried

15

BNF grammar version 2

<s>:i=<np> <v>
<np>::=<pn> | <dp> <n>

<pn>::=Marty | Victoria | Stuart | Jessica
<dp>::=a | the

<n>::=ball | hamster | carrot | computer
<v>::=cried | slept | belched

e Some sentences that could be generated from this grammar:

the carrot cried
Jessica belched
a computer slept

16

BNF grammar version 3

<8>::=<np> <v>
<np>::=<pn> | <dp> <adj> <n>
<pn>::=Marty | Victoria | Stuart | Jessica

<dp>::=a | the

<adj>::=silly | invisible | loud | romantic
<n>::=pall | hamster | carrot | computer
<v>::=cried | slept | belched

e Some sentences that could be generated from this grammar:

the invisible carrot cried
Jessica belched

a computer slept

a romantic ball belched

17

Grammars and recursion

<8>::=<np> <v>
<np>::=<pn> | <dp> <adjp> <n>
<pn>::=Marty | Victoria | Stuart | Jessica

<dp>::=a | the
<adjp>::=<adj> <adijp> | <adj>

<adj>::=si1illy | 1nvisible | loud | romantic
<n>::=pall | hamster | carrot | computer
<v>::=cried | slept | belched

e Grammar rules can be defined recursively, so that the
expansion of a symbol can contain that same symbol.

— There must also be expressions that expand the symbol into
something non-recursive, so that the recursion eventually ends.

18

Grammar, final version

<s>::=<np> <vp>

<np>::=<dp> <adjp> <n>|<pn>

<dp>::=thela

<adjp>::=<adj>|<adj> <adjp>
<adj>::=big|fat|green|wonderful |faulty|subliminal

<n>::=dog|cat|man|university|father |mother|child
<pn>::=John|Jane|Sally|Spot |Fred|Elmo
<Vp>:=<tv> <np>|<1iv>

<tv>::=hit |honored|kissed|helped
<i1v>::=died|collapsed|laughed|wept

e Could this grammar generate the following sentences?
Fred honored the green wonderful child

big Jane wept the fat man fat

e Generate a random sentence using this grammar. 19

Sentence generation

Fred

<np>

<dp>

honored

the

<adjp> <n>
/\
<adj> <adjp>
:
<adj>
green wonderful child

20

