
CSE 143
Lecture 14

Interfaces; Abstract Data Types (ADTs)

reading: 9.5, 11.1; 16.4

slides created by Marty Stepp

http://www.cs.washington.edu/143/

2

Linked vs. array lists

• We have implemented two collection classes:

– ArrayIntList

– LinkedIntList

– They have similar behavior, implemented in different ways.
We should be able to treat them the same way in client code.
• But how?

917-342value

3210index

front 42

nextdata

-3

nextdata

17

nextdata

9

nextdata

3

Another example: Shapes

• Consider the task of writing classes to represent 2D shapes
such as Circle, Rectangle, and Triangle.

• Certain operations are common to all shapes:
– perimeter: distance around the outside of the shape

– area: amount of 2D space occupied by the shape

– Every shape has these, but each computes them differently.

4

Shape area and perimeter

• Circle (as defined by radius r):
area = π r 2

perimeter = 2 π r

• Rectangle (as defined by width w and height h):
area = w h

perimeter = 2w + 2h

• Triangle (as defined by side lengths a, b, and c)
area = √(s (s - a) (s - b) (s - c))

where s = ½ (a + b + c)

perimeter = a + b + c

r

w

h

a

b

c

5

Common behavior

• Suppose we have 3 classes Circle, Rectangle, Triangle.
– Each has the methods perimeter and area.

• We'd like our client code to be able to treat different kinds of
shapes in the same way:
– Write a method that prints any shape's area and perimeter.

– Create an array to hold a mixture of the various shape objects.

– Write a method that could return a rectangle, a circle, a triangle,
or any other kind of shape.

– Make a DrawingPanel display many shapes on screen.

6

Interfaces (9.5)

• interface: A list of methods that a class can promise to implement.

– Inheritance gives you an is-a relationship and code sharing.
• A Lawyer can be treated as an Employee and inherits its code.

– Interfaces give you an is-a relationship without code sharing.
• A Rectangle object can be treated as a Shape but inherits no code.

– Analogous to non-programming idea of roles or certifications:
• "I'm certified as a CPA accountant.
This assures you I know how to do taxes, audits, and consulting."

• "I'm 'certified' as a Shape, because I implement the Shape interface.
This assures you I know how to compute my area and perimeter."

7

Interface syntax

public interface name {

public type name(type name, ..., type name);
public type name(type name, ..., type name);
...
public type name(type name, ..., type name);

}

Example:
public interface Vehicle {

public int getSpeed();

public void setDirection(int direction);

}

8

Shape interface

// Describes features common to all shapes.

public interface Shape {

public double area();

public double perimeter();

}

– Saved as Shape.java

• abstract method: A header without an implementation.
– The actual bodies are not specified, because we want to allow
each class to implement the behavior in its own way.

9

Implementing an interface

public class name implements interface {

...
}

• A class can declare that it "implements" an interface.
– The class promises to contain each method in that interface.

(Otherwise it will fail to compile.)

– Example:
public class Bicycle implements Vehicle {

...
}

10

Interface requirements

public class Banana implements Shape {

// haha, no methods! pwned

}

• If we write a class that claims to be a Shape but doesn't
implement area and perimeter methods, it will not compile.

Banana.java:1: Banana is not abstract and does

not override abstract method area() in Shape

public class Banana implements Shape {

^

11

Interfaces + polymorphism

• Interfaces benefit the client code author the most.

– they allow polymorphism
(the same code can work with different types of objects)

public static void printInfo(Shape s) {

System.out.println("The shape: " + s);

System.out.println("area : " + s.area());

System.out.println("perim: " + s.perimeter());

System.out.println();

}

...

Circle circ = new Circle(12.0);

Triangle tri = new Triangle(5, 12, 13);

printInfo(circ);

printInfo(tri);

12

Recall: Linked / array lists

• We have implemented two collection classes:

– ArrayIntList

– LinkedIntList

– They have similar behavior, implemented in different ways.

917-342value

3210index

front 42

nextdata

-3

nextdata

17

nextdata

9

nextdata

13

Redundant client code

public class ListClient {

public static void main(String[] args) {

ArrayIntList list1 = new ArrayIntList();

list1.add(18);
list1.add(27);
list1.add(93);
System.out.println(list1);
list1.remove(1);
System.out.println(list1);

LinkedIntList list2 = new LinkedIntList();

list2.add(18);
list2.add(27);
list2.add(93);
System.out.println(list2);
list2.remove(1);
System.out.println(list2);

}

}

14

An IntList interface

// Represents a list of integers.

public interface IntList {

public void add(int value);

public void add(int index, int value);

public int get(int index);

public int indexOf(int value);

public boolean isEmpty();

public void remove(int index);

public void set(int index, int value);

public int size();

}

public class ArrayIntList implements IntList { ...

public class LinkedIntList implements IntList { ...

15

Client code w/ interface

public class ListClient {

public static void main(String[] args) {

IntList list1 = new ArrayIntList();

process(list1);

IntList list2 = new LinkedIntList();

process(list2);
}

public static void process(IntList list) {
list.add(18);

list.add(27);

list.add(93);

System.out.println(list);

list.remove(1);

System.out.println(list);

}

}

16

ADTs as interfaces (11.1)

• abstract data type (ADT): A specification of a collection of
data and the operations that can be performed on it.
– Describes what a collection does, not how it does it.

• Java's collection framework uses interfaces to describe ADTs:
– Collection, Deque, List, Map, Queue, Set

• An ADT can be implemented in multiple ways by classes:
– ArrayList and LinkedList implement List

– HashSet and TreeSet implement Set

– LinkedList , ArrayDeque, etc. implement Queue

• They messed up on Stack; there's no Stack interface, just a class.

17

Using ADT interfaces

When using Java's built-in collection classes:

• It is considered good practice to always declare collection
variables using the corresponding ADT interface type:

List<String> list = new ArrayList<String>();

• Methods that accept a collection as a parameter should also
declare the parameter using the ADT interface type:

public void stutter(List<String> list) {

...

}

18

Why use ADTs?

• Why would we want more than one kind of list, queue, etc.?

• Answer: Each implementation is more efficient at certain tasks.
– ArrayList is faster for adding/removing at the end;
LinkedList is faster for adding/removing at the front/middle.
Etc.

– You choose the optimal implementation for your task, and if the
rest of your code is written to use the ADT interfaces, it will work.

