CSE 143
Lecture 11

More Linked Lists

reading: 16.2 - 16.3

slides created by Marty Stepp
http://www.cs.washington.edu/143/

Conceptual questions

e What is the difference between a LinkedIntList and a
LListNode?

e What is the difference between an empty list and a nul1 list?
— How do you create each one?

e Why are the fields of L.i stNode public? Is this bad style?

e \What effect does this code have on a LinkedIntList?

ListNode current = front;
current = null;

Conceptual answers

o A list consists of 0 to many node objects.
— Each node holds a single data element value.

e null list: LinkedIntList list = null;
empty list: LinkedIntList list = new LinkedIntList () ;

e It's okay that the node fields are public, because client code
never directly interacts with L.i stNode objects.

e The code doesn't change the list.
You can change a list only in one of the following two ways:

— Modify its £ront field value.
— Modify the next reference of a node in the list.

Implementing remove

// Removes and returns the list's first wvalue.
public 1nt remove () {

}

— How do we remove the front node from a list?
— Does it matter what the list's contents are before the remove?

Removing front element

e Before removing front element:

data | next data | next
front = a1 42 —+—| 20 /
element 0 element 1
e After first removal: After second removal:
data | next
front = ——T1 | 20 / front =

element 0

remove solution

// Removes and returns the first wvalue.
// Throws a NoSuchElementException on empty list.

public int remove () {
1if (front == null) {
throw new NoSuchElementException();
} else {
int result = front.data;
front = front.next;

return result;

Implementing remove (2)

// Removes value at given index from list.
// Precondition: 0 <= index < size
public void remove(int index) {

}

— How do we remove any node in general from a list?
— Does it matter what the list's contents are before the remove?

Removing from a list

e Before removing element at index 1:

data | next data | next data | next
font = 1[4]| 4+—[-3] J+—[20]]
element 0 element 1 element 2
o After:
data | next data | next
front = a1 42 ——| 20

element 0 element 1

Removing from the front

e Before removing element at index O:

data | next data | next data | next
font = 1 [42] 4+— 3] J—|20]]
element 0 element 1 element 2
o After:
data | next data | next
front=] ——T1 | -3 4| 20

element 0 element 1

Removing the only element

e Before: After:
data | next
front =] —4—T | 20 / front =
element 0

— We must change the front field to store nul1 instead of a node.
— Do we need a special case to handle this?

10

remove (2) solution

// Removes value at given index from list.
// Precondition: 0 <= index < size()
public void remove(int index) {
1f (index == 0) {
// special case: removing first element
front = front.next;
} else {
// removing from elsewhere in the list
ListNode current = front;
for (int 1 = 0; 1 < index - 1; 1++) {
current = current.next;

}

current .next = current.next.next;

11

e Write a method addsorted that accepts an integer value as a
parameter and adds that value to a sorted list in sorted order.

— Before addSorted (17) :

‘ data | next data | next data | next

-4 > 8 ——| 22 /

element 0 element 1 element 2

front =

— After addSorted (17) :

data | next data | next data | next data | next

4 8 17 1 22 |]

element O element 1 element 2 element 3

front =

v

v
v

12

The common case

e Adding to the middle of a list:
addSorted (17)

_ data | next data | next data | next
front = >

_4 > 8 i 22 /

element 0 element 1 element 2

— Which references must be changed?
— What sort of loop do we need?
— When should the loop stop?

13

First attempt

e An incorrect loop:

ListNode current = front;
while (current.data < wvalue) {
current = current.next;
} current

‘ data | next data | next data | next

-4 » 8 —4—| 22 /

element 0 element 1 element 2

front

e What is wrong with this code?
— The loop stops too late to affect the list in the right way.

14

Key idea: peeking ahead

e Corrected version of the loop:

ListNode current = front;

while (current.next.data < wvalue) {
current = current.next;

} current

v

‘ data | next data | next data | next

-4 » 8 —4—| 22 /

element 0 element 1 element 2

front

— This time the loop stops in the right place.

15

Another case to handle

e Adding to the end of a list:
addSorted (42)

; _ data | next data | next data | next
ront = >
_4 > 8 i 22 /
element 0 element 1 element 2

Exception in thread "main'": java.lang.NullPointerException

— Why does our code crash?
— What can we change to fix this case?

16

Multiple loop tests

e A correction to our loop:

ListNode current = front;
while (current.next != null &é&
current.next.data < value) {
current = current.next; current
}
font = : data | next data | next data | next
-4 » 8 —~+—| 22 /

element 0 element 1 element 2

— We must check for a next of null before we check its .data.

17

Third case to handle

e Adding to the front of a list:
addSorted (-10)

_ data | next data | next data | next
front = >

_4 > 8 i 22 /

element 0 element 1 element 2

— What will our code do in this case?
— What can we change to fix it?

18

Handling the front

e Another correction to our code:

if (value <= front.data) {
// insert at front of list
front = new ListNode(value, front);
} else {
// insert in middle of list
ListNode current = front;
while (current.next != null &&
current.next.data < value) {
current = current.next;

— Does our code now handle every possible case?

19

Fourth case to handle

e Adding to (the front of) an empty list:
addSorted (42)

front =

— What will our code do in this case?
— What can we change to fix it?

20

Final version of code

// Adds given value to list in sorted order.
// Precondition: Existing elements are sorted
public void addSorted(int wvalue) {

1f (front == null || value <= front.data) {
// insert at front of list
front = new ListNode(value, front);
} else {
// insert in middle of list
ListNode current = front;
while (current.next != null &&

current.next.data < wvalue) {
current = current.next;

21

Other list features

e Add the following methods to the LinkedIntList:
— size
— 1sEmpty
— clear
— toString
— 1ndexOf

— contains

e Add a size field to the list to return its size more efficiently.

e Add preconditions and exception tests to appropriate methods.

22

