
CSE 143
Lecture 6

Inheritance; binary search

reading: 9.1, 9.3 - 9.4; 13.1

slides created by Marty Stepp

http://www.cs.washington.edu/143/

Inheritance basics

reading: 9.1, 9.3 - 9.4

3

Inheritance

• inheritance: Forming new classes based on existing ones.

– a way to share/reuse code between two or more classes

– superclass: Parent class being extended.

– subclass: Child class that inherits behavior from superclass.

• gets a copy of every field and method from superclass

4

Inheritance syntax

public class name extends superclass {

– Example:

public class Lawyer extends Employee {

...

}

• By extending Employee, each Lawyer object now:

– receives a copy of each method from Employee automatically

– can be treated as an Employee by client code

• Lawyer can also replace ("override") behavior from Employee.

5

The super keyword

• A subclass can call its parent's method/constructor:

super.method(parameters) // method

super(parameters); // constructor

– Example:

public class Lawyer extends Employee {

public Lawyer(String name) {

super(name);
}

// give Lawyers a $5K raise (better)
public double getSalary() {

double baseSalary = super.getSalary();
return baseSalary + 5000.00;

}

}

6

Exercise

• Write a class called StutterIntList.

– Its constructor accepts an integer stretch parameter.

– Every time an integer is added, the list will actually add stretch
number of copies of that integer.

• Example usage:

StutterIntList list = new StutterIntList(3);

list.add(7); // [7, 7, 7]
list.add(-1); // [7, 7, 7, -1, -1, -1]
list.add(2, 5); // [7, 7, 5, 5, 5, 7, -1, -1, -1]
list.remove(4); // [7, 7, 5, 5, 7, -1, -1, -1]

System.out.println(list.getStretch()); // 3

7

Exercise solution
public class StutterIntList extends ArrayIntList {

private int stretch;

public StutterIntList(int stretchFactor) {
super();
stretch = stretchFactor;

}

public StutterIntList(int stretchFactor, int capacity) {
super(capacity);
stretch = stretchFactor;

}

public void add(int value) {
for (int i = 1; i <= stretch; i++) {

super.add(value);
}

}

public void add(int index, int value) {
for (int i = 1; i <= stretch; i++) {

super.add(index, value);
}

}

public int getStretch() {
return stretch;

}
}

8

Subclasses and fields

public class Employee {

private double salary;

...

}

public class Lawyer extends Employee {

...

public void giveRaise(double amount) {

salary += amount; // error; salary is private

}

}

• Inherited private fields/methods cannot be directly accessed by
subclasses. (The subclass has the field, but it can't touch it.)

– How can we allow a subclass to access/modify these fields?

9

Protected fields/methods

protected type name; // field

protected type name(type name, ..., type name) {
statement(s); // method

}

• a protected field or method can be seen/called only by:

– the class itself, and its subclasses

– also by other classes in the same "package" (discussed later)

– useful for allowing selective access to inner class implementation

public class Employee {

protected double salary;

...

}

– Exercise: Add a method count to the StutterIntList that returns

the number of occurrences of a given value.

Binary Search

reading: 13.1

11

Sequential search

• sequential search: Locates a target value in an array / list by
examining each element from start to finish.

– How many elements will it need to examine?

– Example: Searching the array below for the value 42:

– Notice that the array is sorted. Could we take advantage of this?

7

2

10

3

15

4

20

5

22

6

25

7

30

8

36

9

42

10

50

11

56

12

68

13

85

14

103922-4value

161510index

i

12

Binary search (13.1)

• binary search: Locates a target value in a sorted array / list
by successively eliminating half of the array from consideration.

– How many elements will it need to examine?

– Example: Searching the array below for the value 42:

7

2

10

3

15

4

20

5

22

6

25

7

30

8

36

9

42

10

50

11

56

12

68

13

85

14

103922-4value

161510index

min mid max

13

Arrays.binarySearch

// searches an entire sorted array for a given value

// returns its index if found; a negative number if not found

// Precondition: array is sorted

Arrays.binarySearch(array, value)

// searches given portion of a sorted array for a given value

// examines minIndex (inclusive) through maxIndex (exclusive)

// returns its index if found; a negative number if not found

// Precondition: array is sorted

Arrays.binarySearch(array, minIndex, maxIndex, value)

• The binarySearch method in the Arrays class searches an

array very efficiently if the array is sorted.

– You can search the entire array, or just a range of indexes
(useful for "unfilled" arrays such as the one in ArrayIntList)

14

Using binarySearch

// index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

int[] a = {-4, 2, 7, 9, 15, 19, 25, 28, 30, 36, 42, 50, 56, 68, 85, 92};

int index = Arrays.binarySearch(a, 0, 16, 42); // index1 is 10

int index2 = Arrays.binarySearch(a, 0, 16, 21); // index2 is -7

•binarySearch returns the index where the value is found

• if the value is not found, binarySearch returns:

-(insertionPoint + 1)

• where insertionPoint is the index where the element would
have been, if it had been in the array in sorted order.

• To insert the value into the array, negate insertionPoint + 1

int indexToInsert21 = -(index2 + 1); // 6

