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Problem: size vs. capacity

• What happens if the client tries to access an element that is 
past the size but within the capacity (bounds) of the array?

– Example: list.get(7); on a list of size 5  (capacity 10)

– Answer: Currently the list allows this and returns 0.

• Is this good or bad?  What (if anything) should we do about it?
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Preconditions

• precondition: Something your method assumes is true
at the start of its execution.

– Often documented as a comment on the method's header:

// Returns the element at the given index.
// Precondition: 0 <= index < size
public void remove(int index) {

return elementData[index];

}

– Stating a precondition doesn't "solve" the problem, but it at least 
documents our decision and warns the client what not to do.

– What should we do if the client violates the precondition?
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Throwing exceptions (4.5)

throw new ExceptionType();

throw new ExceptionType("message");

• Causes the program to immediately crash with an exception.

• Common exception types:
– ArithmeticException, ArrayIndexOutOfBoundsException, FileNotFoundException, 

IllegalArgumentException, IllegalStateException, IOException, NoSuchElementException, 
NullPointerException, RuntimeException, UnsupportedOperationException

• Why would anyone ever want  a program to crash?
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Exception example

public void get(int index) {

if (index < 0 || index >= size) {

throw new ArrayIndexOutOfBoundsException(index);

}

return elementData[index];

}

– Exercise: Modify the rest of ArrayIntList to state 

preconditions and throw exceptions as appropriate.
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Private helper methods

private type name(type name, ..., type name) {
statement(s);

}

• a private method can be seen/called only by its own class

– your object can call the method on itself, but clients cannot call it

– useful for "helper" methods that clients shouldn't directly touch

private void checkIndex(int index, int min, int max) {

if (index < min || index > max) {

throw new IndexOutOfBoundsException(index);

}

}
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Postconditions

• postcondition: Something your method promises will be true
at the end of its execution.

– Often documented as a comment on the method's header:

// Makes sure that this list's internal array is large
// enough to store the given number of elements.
// Postcondition: elementData.length >= capacity

public void ensureCapacity(int capacity) {

// double in size until large enough
while (capacity > elementData.length) {

elementData = Arrays.copyOf(elementData,

2 * elementData.length);

}

}

– If your method states a postcondition, clients should be able to
rely on that statement being true after they call the method.
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Thinking about testing

• If we wrote ArrayIntList and want to give it to others, we 

must make sure it works adequately well first.

• Some programs are written specifically to test other programs.
We could write a client program to test our list.

– Its main method could construct several lists, add elements to 

them, call the various other methods, etc.

– We could run it and look at the output to see if it is correct.

– But that is tedious and error-prone; there is a better way.



Testing with JUnit

(in brief)
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Unit testing

• unit testing: Looking for errors in a subsystem in isolation.

– generally a "subsystem" means a particular class or object

– the Java library JUnit helps us to easily perform unit testing

• the basic idea:

– For a given class Foo, create another class FooTest to test it 

that contains "test case" methods to run.

– Each method looks for particular results and passes / fails.

• JUnit provides "assert" commands to help us write tests.
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JUnit and Eclipse

• To add JUnit to an Eclipse project, click:

– Project → Properties → Build Path → Libraries →

Add Library... → JUnit → JUnit 4 → Finish

– (see web site for jGRASP instructions)

• To create a test case:

– right-click a file and
choose New Test

– or click File → New →

JUnit Test Case

– Eclipse can create stubs
of method tests for you.
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A JUnit test class

import org.junit.*; 

import static org.junit.Assert.*;

public class name {

...

@Test

public void name() {     // a test case method
...

}

}

– A method with @Test is flagged as a JUnit test case

•all @Test methods run when JUnit runs your test class
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JUnit assertion methods

– The idea: Put assertion calls in your @Test methods to check 

things you expect to be true.  If they aren't, the test will fail.

• Why is there no pass method?

– Each method can also be passed a string to show if it fails:

• e.g.  assertEquals("message", expected, actual)

other assertion methods: assertNull, assertNotNull, 
assertSame, assertNotSame, assertArrayEquals

immediately causes current test to failfail()

fails if the values are not the sameassertEquals(expected, actual)

fails if the boolean test is trueassertFalse(test)

fails if the boolean test is falseassertTrue(test)
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ArrayIntList JUnit test
import org.junit.*; 

import static org.junit.Assert.*;

public class TestArrayIntList {

@Test
public void testAddGet1() {

ArrayIntList list = new ArrayIntList();

list.add(42);

list.add(-3);

list.add(15);

assertEquals(42, list.get(0));
assertEquals(-3, list.get(1));
assertEquals(15, list.get(2));

}

@Test
public void testIsEmpty() {

ArrayIntList list = new ArrayIntList();

assertTrue(list.isEmpty());
list.add(123);

assertFalse(list.isEmpty());
}

...

}
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Running a test

• Right click it in the Eclipse Package Explorer at left;  choose:

Run As → JUnit Test

• the JUnit bar will show green if all tests pass, red if any fail

• the Failure Trace shows which tests
failed, if any, and why
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Testing for exceptions

@Test(expected = ExceptionType.class)
public void name() {

...

}

– will pass if it does throw the given exception, and fail if not

• use this to test for expected errors

@Test(expected = ArrayIndexOutOfBoundsException.class)

public void testBadIndex() {

ArrayIntList list = new ArrayIntList();

list.get(4);   // should fail

}
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Tests with a timeout

@Test(timeout = 5000)

public void name() { ... }

– The above method will be considered a failure if it doesn't finish 
running within 5000 ms

private static final int TIMEOUT = 2000;

...

@Test(timeout = TIMEOUT)

public void name() { ... }

– Times out / fails after 2000 ms
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Tips for testing

• You cannot test every possible input, parameter value, etc.

– So you must think of a limited set of tests likely to expose bugs.

• Think about boundary cases

– positive; zero; negative numbers

– right at the edge of an array or collection's size

• Think about empty cases and error cases

– 0, -1, null;  an empty list or array

• test behavior in combination

– maybe add usually works, but fails after you call remove

– make multiple calls;  maybe size fails the second time only


