
CSE 143
Lecture 5

More ArrayIntList:

Pre/postconditions; exceptions;
testing and JUnit

reading: 15.2 - 15.3

slides created by Marty Stepp

http://www.cs.washington.edu/143/

2

Problem: size vs. capacity

• What happens if the client tries to access an element that is
past the size but within the capacity (bounds) of the array?

– Example: list.get(7); on a list of size 5 (capacity 10)

– Answer: Currently the list allows this and returns 0.

• Is this good or bad? What (if anything) should we do about it?

5size

0

5

0

6

5

4

0

7

0

8

9

2

7

3

083value

910index

3

Preconditions

• precondition: Something your method assumes is true
at the start of its execution.

– Often documented as a comment on the method's header:

// Returns the element at the given index.
// Precondition: 0 <= index < size
public void remove(int index) {

return elementData[index];

}

– Stating a precondition doesn't "solve" the problem, but it at least
documents our decision and warns the client what not to do.

– What should we do if the client violates the precondition?

4

Throwing exceptions (4.5)

throw new ExceptionType();

throw new ExceptionType("message");

• Causes the program to immediately crash with an exception.

• Common exception types:
– ArithmeticException, ArrayIndexOutOfBoundsException, FileNotFoundException,

IllegalArgumentException, IllegalStateException, IOException, NoSuchElementException,
NullPointerException, RuntimeException, UnsupportedOperationException

• Why would anyone ever want a program to crash?

5

Exception example

public void get(int index) {

if (index < 0 || index >= size) {

throw new ArrayIndexOutOfBoundsException(index);

}

return elementData[index];

}

– Exercise: Modify the rest of ArrayIntList to state

preconditions and throw exceptions as appropriate.

6

Private helper methods

private type name(type name, ..., type name) {
statement(s);

}

• a private method can be seen/called only by its own class

– your object can call the method on itself, but clients cannot call it

– useful for "helper" methods that clients shouldn't directly touch

private void checkIndex(int index, int min, int max) {

if (index < min || index > max) {

throw new IndexOutOfBoundsException(index);

}

}

7

Postconditions

• postcondition: Something your method promises will be true
at the end of its execution.

– Often documented as a comment on the method's header:

// Makes sure that this list's internal array is large
// enough to store the given number of elements.
// Postcondition: elementData.length >= capacity

public void ensureCapacity(int capacity) {

// double in size until large enough
while (capacity > elementData.length) {

elementData = Arrays.copyOf(elementData,

2 * elementData.length);

}

}

– If your method states a postcondition, clients should be able to
rely on that statement being true after they call the method.

8

Thinking about testing

• If we wrote ArrayIntList and want to give it to others, we

must make sure it works adequately well first.

• Some programs are written specifically to test other programs.
We could write a client program to test our list.

– Its main method could construct several lists, add elements to

them, call the various other methods, etc.

– We could run it and look at the output to see if it is correct.

– But that is tedious and error-prone; there is a better way.

Testing with JUnit

(in brief)

10

Unit testing

• unit testing: Looking for errors in a subsystem in isolation.

– generally a "subsystem" means a particular class or object

– the Java library JUnit helps us to easily perform unit testing

• the basic idea:

– For a given class Foo, create another class FooTest to test it

that contains "test case" methods to run.

– Each method looks for particular results and passes / fails.

• JUnit provides "assert" commands to help us write tests.

11

JUnit and Eclipse

• To add JUnit to an Eclipse project, click:

– Project → Properties → Build Path → Libraries →

Add Library... → JUnit → JUnit 4 → Finish

– (see web site for jGRASP instructions)

• To create a test case:

– right-click a file and
choose New Test

– or click File → New →

JUnit Test Case

– Eclipse can create stubs
of method tests for you.

12

A JUnit test class

import org.junit.*;

import static org.junit.Assert.*;

public class name {

...

@Test

public void name() { // a test case method
...

}

}

– A method with @Test is flagged as a JUnit test case

•all @Test methods run when JUnit runs your test class

13

JUnit assertion methods

– The idea: Put assertion calls in your @Test methods to check

things you expect to be true. If they aren't, the test will fail.

• Why is there no pass method?

– Each method can also be passed a string to show if it fails:

• e.g. assertEquals("message", expected, actual)

other assertion methods: assertNull, assertNotNull,
assertSame, assertNotSame, assertArrayEquals

immediately causes current test to failfail()

fails if the values are not the sameassertEquals(expected, actual)

fails if the boolean test is trueassertFalse(test)

fails if the boolean test is falseassertTrue(test)

14

ArrayIntList JUnit test
import org.junit.*;

import static org.junit.Assert.*;

public class TestArrayIntList {

@Test
public void testAddGet1() {

ArrayIntList list = new ArrayIntList();

list.add(42);

list.add(-3);

list.add(15);

assertEquals(42, list.get(0));
assertEquals(-3, list.get(1));
assertEquals(15, list.get(2));

}

@Test
public void testIsEmpty() {

ArrayIntList list = new ArrayIntList();

assertTrue(list.isEmpty());
list.add(123);

assertFalse(list.isEmpty());
}

...

}

15

Running a test

• Right click it in the Eclipse Package Explorer at left; choose:

Run As → JUnit Test

• the JUnit bar will show green if all tests pass, red if any fail

• the Failure Trace shows which tests
failed, if any, and why

16

Testing for exceptions

@Test(expected = ExceptionType.class)
public void name() {

...

}

– will pass if it does throw the given exception, and fail if not

• use this to test for expected errors

@Test(expected = ArrayIndexOutOfBoundsException.class)

public void testBadIndex() {

ArrayIntList list = new ArrayIntList();

list.get(4); // should fail

}

17

Tests with a timeout

@Test(timeout = 5000)

public void name() { ... }

– The above method will be considered a failure if it doesn't finish
running within 5000 ms

private static final int TIMEOUT = 2000;

...

@Test(timeout = TIMEOUT)

public void name() { ... }

– Times out / fails after 2000 ms

18

Tips for testing

• You cannot test every possible input, parameter value, etc.

– So you must think of a limited set of tests likely to expose bugs.

• Think about boundary cases

– positive; zero; negative numbers

– right at the edge of an array or collection's size

• Think about empty cases and error cases

– 0, -1, null; an empty list or array

• test behavior in combination

– maybe add usually works, but fails after you call remove

– make multiple calls; maybe size fails the second time only

