
CSE 143, Winter 2011
Final Exam

Thursday, March 17, 2011

Personal Information:

Name: ___

Section: ___________________ TA: ___________________

Student ID #: ___________________

• You have 110 minutes to complete this exam.
You may receive a deduction if you keep working after the instructor calls for papers.

• This exam is open-book for the Building Java Programs textbook, but otherwise it is closed-book/notes.
You may not use any paper resources or any computing devices including calculators.

• Code will be graded on proper behavior/output and not on style, unless otherwise indicated.
• Do not abbreviate code, such as "ditto" marks or dot-dot-dot ... marks.

The only abbreviations that are allowed for this exam are:
 S.o.p for System.out.print, and

 S.o.pln for System.out.println.

• You do not need to write import statements in your code.
• If you enter the room, you must turn in an exam before leaving the room.
• You must show your Student ID to a TA or instructor for your exam to be accepted.

Good luck!

Score summary: (for grader only)

Problem Description Earned Max
1 Inheritance/Polymorphism 15
2 Inheritance/Comparable Programming 15
3 Linked List Programming 15
4 Searching and Sorting 10
5 Binary Search Trees 15
6 Binary Tree Programming 15
7 Binary Tree Programming 15
X Extra Credit +1

TOTAL Total Points 100
1 of 16

1. Inheritance and Polymorphism

Consider the following classes:

public class Computer extends Mineral {
 public void b() {
 System.out.println("Computer b");
 super.b();
 }

 public void c() {
 System.out.println("Computer c");
 }
}

public class Mineral extends Vegetable {
 public void b() {
 System.out.println("Mineral b");
 a();
 }
}

public class Animal extends Mineral {
 public void a() {
 System.out.println("Animal a");
 }

 public void c() {
 b();
 System.out.println("Animal c");
 }
}

public class Vegetable {
 public void a() {
 System.out.println("Vegetable a");
 }

 public void b() {
 System.out.println("Vegetable b");
 }
}

and that the following variables are defined:

 Vegetable var1 = new Computer();
 Mineral var2 = new Animal();
 Vegetable var3 = new Mineral();
 Object var4 = new Mineral();

In the table below, indicate in the right-hand column the output
produced by the statement in the left-hand column. If the statement
produces more than one line of output, indicate the line breaks with
slashes as in "a / b / c" to indicate three lines of output with "a"
followed by "b" followed by "c". If the statement causes an error,
fill in the right-hand column with the phrase "error" to indicate
this.

Statement

var1.a();

var1.b();

var1.c();

var2.a();

var2.b();

var3.a();

var3.b();

var4.a();

((Computer) var1).b();

((Computer) var1).c();

((Computer) var2).c();

((Animal) var2).c();

((Computer) var3).b();

((Vegetable) var4).b();

((Animal) var4).c();

Output

2 of 16

2. Inheritance and Comparable Programming

You have been asked to extend a pre-existing class Student that represents a college student. A student has a name,
a year (such as 1 for freshman and 4 for senior), and a set of courses that he/she is taking.

Member Description
private String name
private int year
private Set<String> courses

private data of each student

public Student(String name, int year) constructs a student with the given name and year;
initially not taking any courses

public void addCourse(String name) adds the given course to this student's set of courses
public void dropAll() removes the student from all of his/her courses
public int getCourseCount() returns number of courses the student is taking
public String getName() returns student's name
public double getTuition() returns the amount of money the student pays for

tuition each year, which is $1,234.50 per course
public int getYear() returns student's year, from 1 (freshman) to 4 (senior)

You are to define a new class called GradStudent that extends Student through inheritance. A GradStudent
should behave like a Student except for the following differences:

• A grad student keeps track of a research advisor, which is a professor working with the student.
• Grad students are considered to be 4 years further ahead than typical students. So, for example, a grad

student in year 1 of grad school is really in year 5 of school overall. The getYear method should still return
the student's overall year in school; for example, a 3rd-year grad student should return 7 from getYear.

• Grad students can enroll in a maximum of 3 courses at a time. If a grad student tries to add additional
courses beyond 3, the course is not added to the student's set of courses.

• Grad students pay tuition differently than other students. If the grad student is enrolled in 1 course or no
courses, the grad student pays a flat rate of tuition of $500.00. If the grad student is enrolled in 2 or 3 courses,
he/she pays twice as much as the normal student rate for all of his/her courses.

• If grad students work too much, they become "burnt out." A burnt-out student is one who is in his/her 5th or
higher year of grad school (9th or higher year of school overall) or one who is taking 3 courses.

You should provide the same methods as the superclass, as well as the following new behavior.

Constructor/Method Description
public GradStudent(String name, int year,
 String advisor)

constructs a graduate student with the given name, given
year (where 1 is the first year of grad school, 5th year of
school overall; etc.), and research advisor

public String getAdvisor() returns this grad student's research advisor
public boolean isBurntOut() returns true if grad student is "burnt out" (in at least the

5th year of grad school, and/or taking 3 courses)

You must also make GradStudent objects comparable to each other using the Comparable interface.
GradStudents are compared by year in ascending order, breaking ties by count of courses in ascending order, and
further breaking ties by advisor in ascending alphabetical order. In other words, a GradStudent object with a lower
year is considered to be "less than" one with a higher year. If two students have the same year, the one with a lower
count of courses is considered to be "less than" one with a higher course count. If the two students have the same year
and the same number of courses, the one whose advisor's name comes first in alphabetical order is considered "less."
(You should compare the strings as-is and not alter their casing, spacing, etc.) If the two objects are the same by all
three of these criteria, they are considered to be "equal."

The majority of your grade comes from implementing the correct behavior. Part of your grade also comes from
appropriately utilizing the behavior you have inherited from the superclass and not re-implementing behavior that
already works properly in the superclass. You may assume valid arguments are passed to all of your class's methods
and constructors. (Write your answer on the next page.)

3 of 16

2. Inheritance and Comparable Programming (writing space)

4 of 16

3. Linked List Programming

Write a method removeEvens that could be added to the LinkedIntList class from lecture and section. The
method removes all elements from the list that store even numbers (numbers divisible by 2, such as 14, -6, 48, 0, 22,
etc). Your method should also add a value to the end of the linked list that stores a count of how many elements were
removed. (This might be an even number; that's okay.)

Suppose a LinkedIntList variable named list stores the following values:

[4, 2, 1, 10, 15, 8, 7, 4, 20, 36, -3, 40, 5]

The call of list.removeEvens(); would change the list to store the following elements:

[1, 15, 7, -3, 5, 8]

Note that the 8 on the end of the list signifies that the call removed eight elements. If the list is empty or does not
contain any even elements, it is unchanged except that a new node will be added to the end containing the value 0
(because no nodes were removed).

For full credit, obey the following restrictions in your solution:

• The method should run in no worse than O(N) time, where N is the length of the list.
For full credit, you can make up to 2 passes over the list at most.

• Do not call any methods of the linked list class to solve this problem.
Note that the list does not have a size field, and you are not supposed to call its size method.

• Do not use auxiliary data structures such as arrays, ArrayList, Queue, String, etc.
• Do not modify the data field of any nodes; you must solve the problem by changing the links between nodes.
• You may not create new ListNode objects, except for the single new node that you are to add to the end of

the list. You may create as many ListNode variables as you like.

You are using the LinkedIntList and ListNode class as defined in lecture and section. (See cheat sheet.)

5 of 16

3. Linked List Programming (writing space)

6 of 16

4. Searching and Sorting

(a) Suppose we are performing a binary search on a sorted array called numbers initialized as follows:

// index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
int[] numbers = {-5, -1, 0, 3, 9, 14, 19, 24, 33, 41, 56, 62, 70, 88, 99};

int index = binarySearch(numbers, 18);

Write the indexes of the elements that would be examined by the binary search (the mid values in our algorithm's
code) and write the value that would be returned from the search. Assume that we are using the binary search
algorithm shown in lecture and section.

• Indexes examined: ___

• Value Returned: __________________________

(b) Write the elements of the array below after each of the first 3 passes of the outermost loop of a selection sort.

int[] numbers = {29, 17, 3, 94, 46, 8, -4, 12};
selectionSort(numbers);

(c) Trace the complete execution of the merge sort algorithm when called on the array below, similarly to the
example trace of merge sort shown in the lecture slides. Show the sub-arrays that are created by the algorithm
and show the merging of sub-arrays into larger sorted arrays.

int[] numbers = {29, 17, 3, 94, 46, 8, -4, 12};
mergeSort(numbers);

7 of 16

5. Binary Search Trees

(a) Write the binary search tree that would result if these elements were added to an empty tree in this order:

• Pikachu, Slowpoke, Vulpix, Golbat, Blastoise, Jigglypuff, Tentacool, Charizard, Weedle, Squirtle, Mew

(b) Write the elements of your above tree in the order they would be visited by each kind of traversal:

• Pre-order: __

• In-order: __

• Post-order: __

8 of 16

6. Binary Tree Programming

Write a method countBelow that could be added to the IntTree class from lecture and section. The method accepts
an integer parameter representing a given level of the tree and returns an integer representing the count of the number
of nodes in exist in the tree at that level or deeper. For example, if 3 is passed, you should count the number of nodes
at levels 3, 4, 5, 6, ... For this problem, the root of a tree is defined to be at level 1, its children are at level 2, etc.

If the tree is empty or does not have any nodes at the given level or deeper, you should return 0. If a negative value or
0 is passed, your method should throw an IllegalArgumentException.

The following diagram and table show the results of several calls of your method on a particular tree:

IntTree tree = new IntTree();
...

 Level
 +----+
 | 67 | 1
 +----+
 / \
 / \
 +----+ +----+
 | 80 | | 52 | 2
 +----+ +----+
 / \ /
 / \ /
 +----+ +----+ +----+
 | 16 | | 21 | | 99 | 3
 +----+ +----+ +----+
 / \ \
 / \ \
 +----+ +----+ +----+
 | 45 | | 33 | | 67 | 4
 +----+ +----+ +----+

call returns
tree.countBelow(3) 6 (16, 21, 99, 45, 33, and 67)
tree.countBelow(4) 3 (45, 33, and 67)
tree.countBelow(5) 0
tree.countBelow(1) 9 (all of the nodes in the tree)
tree.countBelow(0) IllegalArgumentException
tree.countBelow(-2) IllegalArgumentException

You may define private helper methods to solve this problem, but otherwise you may not call any other methods of
the tree class nor create any data structures. Do not construct any new node objects or change the data of any nodes.

Recall the IntTree and IntTreeNode classes as shown in lecture and section. (See cheat sheet.)

(You can use the next page for additional writing space.)

9 of 16

6. Binary Tree Programming (writing space)

10 of 16

7. Binary Tree Programming

Write a method removeMatchingLeaves that could be added to the IntTree class from lecture and section. The
method accepts a second IntTree as its parameter and removes any leaf nodes (nodes without children) that "match"
with a corresponding node in the other tree. For this problem, two nodes "match" if they contain the same data value
and are located in exactly the same place in the tree relative to the trees' overall roots. For a node to be removed by
your method, it must be a leaf in your tree; but it need not be a leaf in the other tree passed as a parameter. If the
second tree doesn't contain a node at that corresponding location or the value there is different, it does not match.

For example, suppose two variables of type IntTree called tree1 and tree2 store the following elements:

tree1 tree2
 +----+
 | 3 |
 +----+
 / \
 / \
 +----+ +----+
 | 4 | | 7 |
 +----+ +----+
 / \ / \
 / \ / \
 +----+ +----+ +----+ +----+
 | 0 | | 9 | | 2 | | 5 |
 +----+ +----+ +----+ +----+
 / \
 / \
 +----+ +----+
 | 8 | | 6 |
 +----+ +----+

 +----+
 | 3 |
 +----+
 / \
 / \
 +----+ +----+
 | 28 | | 7 |
 +----+ +----+
 / \ /
 / \ /
 +----+ +----+ +----+
 | 0 | | 9 | | 2 |
 +----+ +----+ +----+
 \ \ \
 \ \ \
 +----+ +----+ +----+
 | 8 | | 6 | | 31 |
 +----+ +----+ +----+

The call of tree1.removeMatchingLeaves(tree2); would modify tree1 to store the elements below. The
leaf nodes containing 0, 2, and 6 have been removed because they match the corresponding nodes in tree2. The
other leaves from tree1, which contain the values 8 and 5, are not removed because they aren't matched in tree2.

tree1
 +----+
 | 3 |
 +----+
 / \
 / \
 +----+ +----+
 | 4 | | 7 |
 +----+ +----+
 \ \
 \ \
 +----+ +----+
 | 9 | | 5 |
 +----+ +----+
 /
 /
 +----+
 | 8 |
 +----+

You may define private helper methods, but otherwise you may not call any other methods of the class nor create any
data structures. You should not construct any new node objects or modify the tree passed in as the parameter. It may
be helpful for you to note that your method can directly access the other tree's overallRoot field with an expression
such as tree2.overallRoot (this is allowed in Java because they are objects of the same class).

For full credit, your solution must be recursive and utilize the x = change(x) pattern discussed in lecture.

(Write your answer on the next page.)

11 of 16

7. Binary Tree Programming (writing space)

12 of 16

X. Extra Credit

The world of rap was saddened this week by the loss of Nathaniel Dwayne "Nate Dogg" Hale, the iconic rapper who
passed away at the age of 41. In his memory, draw a picture of what your TA would look like if he/she chose to
become a rapper or otherwise chose to fully embrace rap/hip-hop culture. Make sure to put the TA's name somewhere
in the picture so we know who it is.

(This is not an art class, so any drawing that appears to reflect more than a moment's effort will get the point.)

13 of 16

Additional Writing Space

If you choose to write your solution to a problem on this page, please make a note on that problem's original page
saying "see extra sheet" so that the TA will know to look here to find your solution.

14 of 16

Additional Writing Space

If you choose to write your solution to a problem on this page, please make a note on that problem's original page
saying "see extra sheet" so that the TA will know to look here to find your solution.

15 of 16

***** CSE 143 FINAL EXAM CHEAT SHEET *****

LinkedIntList (16.2)
public class LinkedIntList {
 private ListNode front;

 methods
}

public class ListNode {
 public int data; // data stored in this node
 public ListNode next; // link to next node in the list
 ...
}

IntTree (17.2)
public class IntTreeNode {
 public int data; // data stored in this node
 public IntTreeNode left; // reference to left subtree
 public IntTreeNode right; // reference to right subtree

 public IntTreeNode(int data) { ... }
 public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) {...}
}

public class IntTree {
 private IntTreeNode overallRoot;

 methods
}

16 of 16

