
  Page 1 of 9  

CSE 143 Midterm Exam Aug. 1, 2011 

 

Name ___________________________________________  Student ID # __________________ 

 

Section _______________  TA Name _____________________________________ 
 

The exam is closed book, closed notes, closed devices, except that you may have a 5x8 card with hand-
written notes plus the reference sheet handed out with the exam.  There are two blank pages at the end 
of the exam if you need extra scratch space to write. 

You must show your ID and hand in your exam as you leave the room.  You may not come back inside 
after that. 

Style and indenting matter, within limits.  We’re not overly picky about details like an extra or a missing 
parenthesis, but we do need to be able to follow your code and understand it.  A few well-chosen 
comments can be very helpful.  Too many make it hard to read the code. 

If you have questions during the exam, raise your hand and someone will come to you.  Don’t leave your 
seat. 

Please wait to turn the page until everyone has their exam and you have been told to begin. 

Advice:  The solutions to many of the problems are quite short.  Don’t be alarmed if there is a lot more 
room on the page than you actually need for your answer. 

More gratuitous advice: Be sure to get to all the questions.  If you find you are spending a lot of time on 
a question, move on and try other ones, then come back to the question that was taking the time. 

 

 1 – ArrayLists / 15 

 2 – Complexity / 12 

 3 – Stacks/Queues / 20 

 4 – Linked Lists / 20 

 5 – Collections / 18 

 6 - Recursion / 15 

Total / 100 

 
 



CSE 143 Midterm, August 1, 2011 

 Page 2 of 9 

Question 1. (15 points)  ArrayLists.  Consider the following method: 

 public static void scramble(ArrayList<String> list) { 

  for (int i = list.size()-1; i >= 0; i = i-2) { 

   String s = list.get(i); 

   list.remove(i); 

   list.add(s); 

  } 

 } 

Now, suppose we have an ArrayList named words containing the following strings: 

 ["eye", "frog", "of", "from", "newt", "toe"] 

What output is produced if we call method scramble with this ArrayList as an argument, and then 
print the list after the method returns, as follows: 

 scramble(words); 

 System.out.println(words); 

(Don’t worry about the punctuation – the number and order of the words in the output is what’s 

important.) 

Output: 

 



CSE 143 Midterm, August 1, 2011 

 Page 3 of 9 

Question 2.  (12 points)  Complexity.  Each of the following methods processes arrays of integers.  For 
each method, circle the complexity (O(1), O(n), etc.) that best characterizes its execution time as a 
function of the size of its array argument.  (i.e,. The array size is the problem size.) 

Hint: don’t worry too much about what each method does.  Just figure out how many steps it takes. 
 

 

 (a)  // modify elements of array a in a strange way 
 void mangle(int[] a) { 

  for (int i=0; i < a.length; i++) { 

   if (a[i] < 0) { 

    a[i] = -a[i]; 

   } else { 

    a[i] = 2*a[i]; 

   } 

  } 

 } 

 

Circle: O(1) O(n) O(n2) O(n3)    O(2n) 

 

 

 

(b) // rearrange elements of a  (Reminder:  n++ increases n by 1,  n-- decreases n by 1) 

 void mumble(int[] a) { 

  int left  = 0; 

  int right = a.length-1; 

  while (left < right) { 

   int temp = a[left]; 

   a[left]  = a[right]; 

   a[right] = temp; 

   left++; 

   right--; 

  }   

 } 

 

Circle: O(1) O(n) O(n2) O(n3) O(2n) 



CSE 143 Midterm, August 1, 2011 

 Page 4 of 9 

Question 3.  (20 points)  Stacks/queues.  Complete the method isBalanced below so that it returns true 

if its string argument contains properly nested and balanced parentheses (‘(‘ and ‘)’) and square 
brackets (‘[‘ and ‘]’), and returns false if not.  A string contains properly nested and balanced 
parentheses and brackets if there is exactly one right parenthesis or bracket for each left parenthesis or 
bracket, and pairs of parentheses and brackets are properly nested.  Other characters in the string are 
ignored.  Examples: 

 isBalanced("(this) is [balanced (properly)], isn’t it?")   => true 

 isBalanced("(this is [not) okay]")        => false    (() and [] pairs don’t match) 

 isBalanced("(this (isn’t okay)")          => false   (not enough closing ‘)’s) 

 isBalanced("this is okay ([(())][[()]])") => true 

For full credit you may use only one queue or stack in your solution (but not both).  You may have as 
many additional simple variables as you like, but no additional collections, arrays, or strings. 

Hint: The logic needed has a close resemblance to that needed for the HTML validator assignment. 

 public static boolean isBalanced(String s) { 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 } 



CSE 143 Midterm, August 1, 2011 

 Page 5 of 9 

Question 4.  (20 points)  Linked lists. Suppose we have a class SortedStringLinkedList that uses a linked 
list made up of ListNode objects to store a collection of strings in non-decreasing order. 

Complete the definition of method removeDuplicates, below, so that when it is called it deletes 
duplicate values from the sorted list.  For example if the list contains 

 ["apple", "apple", "banana", "banana", "cherry", "donut", "donut", "donut", "eggplant"] 

then after calling method removeDuplicates the list should contain 

 ["apple", "banana", "cherry", "donut", "eggplant"] 

For full credit you must remove duplicate ListNodes from the list, and you may not change the data 
stored in any ListNode, create any new ListNodes, or use any other collections, strings, or arrays. 

Hint: The solution can be quite simple.  If you have complicated, nested loops, see if you can simplify. 

 public class SortedStringLinkedList {  public class ListNode { 

  private ListNode list; // list data    public String data  

  ...        public ListNode next; 

           ... 

 public void removeDuplicates() { 

  // write your code below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 } 



CSE 143 Midterm, August 1, 2011 

 Page 6 of 9 

Question 5. (18 points)  Collections.  Suppose we have a collection of type Map<String,Double> that 
contains a map from names to debit card balances.  For example, the map might contain the following 
key/value pairs: 

 {Bart=-17.42, Marge=35.12, Lisa=1435.21, Homer=-3.55, Krusty=0.00} 

Complete method printOverspent below so that it prints the name and balance for each name that has a 
negative debit card balance associated with it. The names may be printed in any order; each separate 
name and balance pair should appear together on a new output line.  Names and balances should not 
be printed for those names whose balance is greater than or equal to zero.  Given the above data, the 
output should be 

 Bart   -17.42 
 Homer  -3.55 

(The same two lines in the reverse order would also be okay.) 

You may assume that the Map argument is not null and that no name or balance is null.  You should not 
modify the original list.  

 public void printOverspent(Map<String,Double> accounts) { 

 

 

 

 

 

 

 

 

 

 

 

 

 

 }   

 



CSE 143 Midterm, August 1, 2011 

 Page 7 of 9 

Question 6. (15 points)  Recursion.  Consider the following method. 

 public static int f(int n, int m) { 

  if (n == 0) { 

   return m; 

  } else if (m == 0) { 

   return n; 

  } else { 

   return f(n/10, m/10)*100 + (n%10)*10 + m%10; 

  } 

 } 

 

What value is returned by the method call f(123,864)? 

It would be helpful if you showed your work and partial results so we can follow the sequence of 
recursive calls and argument values.  That should make it easier for you to get the correct answer and 
easier for us to award partial credit if something goes wrong along the way.  Just be sure that you clearly 
show your final answer at the end. 



CSE 143 Midterm, August 1, 2011 

 Page 8 of 9 

Additional blank page for scratch paper. 

If you write an answer to a test question here, be sure to go back to the original page and write a note so 

the grader can find your answer. 

 



CSE 143 Midterm, August 1, 2011 

 Page 9 of 9 

Additional blank page for scratch paper. 

If you write an answer to a test question here, be sure to go back to the original page and write a note so 

the grader can find your answer. 

 


