CSE 143
Lecture 25

Hashing

read 11.2

slides created by Marty Stepp
http://www.cs.washington.edu/143/

SearchTree as a set

e We implemented a class SearchTree to store a BST of ints:

e Qur BST is essentially a set of integers. overgJIRoot

Operations we support:
— add

— contains

— remove

e But there are other ways to implement a set...

Implementing a HashSet

e Elements of @ TreeSet (IntTree) are in BST sorted order.
— We need this in order to add or search in O(log NV) time.

e But it doesn't really matter what order the elements appear in
a set, so long as they can be added and searched quickly.

e Consider the task of storing a set in an array.
— What would make a good ordering for the elements?

inde (01|23 (4|5|6|7|8]9
value| 71112149000 |0|0|O0
1 4
inde (01|23 (4|5|6|7|8]9
value| 0|10 02410 0| 7|0 |49
il 3

// 11
// 49
// 24

e hash: To map a value to an integer index.
— hash table: An array that stores elements via hashing.

o°® o° oP°

o®

length

N OB

e hash function: An algorithm that maps values to indexes.

— one possible hash function for integers:
HF(I) = 1%

24

49

Hashing objects

e It is easy to hash an integer I (use index I % length).
— How can we hash other types of values (such as objects)?

e All Java objects contain the following method:

public int hashCode ()
Returns an integer hash code for this object.

— We can call hashCode on any object to find its preferred index.

e How is hashCode implemented?

— Depends on the type of object and its state.
— You can write your own hashCode methods in classes you write.

String's hashCode

e The hashCode function for St ring objects looks like this:

public 1nt hashCode () {
int hash = 0;
for (int 1 = 0; 1 < this.length(); 1i++) {

hash 31 * hash + this.charAt (i) ;
}
return hash; n—1 -
’ h(s) = slz| - 31771
| (5)= 3 sl

— Early versions of the Java examined only the first 16 characters.
For some common data this led to poor hash table performance.

— As with any general hashing function, collisions are possible.
e Example: "Ea" and "FB" have the same hash value.

Efficiency of hashing

public static int hashCode (int 1)

o

return Math.abs (i) % elementData.length;

}

e Add: simply set elementData[hashCode (i)]

|
|_|-

e Search: check if elementData[hashCode (1)] == i;

e Remove: set elementDatal[hashCode (i)] = 0;

e What is the runtime of add, contains, and remove?
~ O(1)! OMGWTFBBQFAST

e Are there any problems with this approach?

e collision: When a hash function maps two or more
elements to the same index.

set.add (11);
set.add (49) ;
set.add (24) ;
set.add (7);
set.add(54); // collides with 24!

e collision resolution: An algorithm for fixing collisions.

inde (01|23 (4|5|6|7|8]9
value| 0|1 (0| 0|54|0|0| 7|0 |49

Probing

e probing: Resolving a collision by moving to another index.
— linear probing: Moves to the next index.

set.add(11);
set.add (49) ;
set.add (24) ;
set.add (7);
set.add(54); // collides with 24

inde (0|12 |3(4|5|6|7|8]|9
value| 0|1 10| 024|540 | 7 | 0 |49

— Is this a good approach?

o clustering: Clumps of elements at neighboring indexes.
— slows down the hash table lookup; you must loop through them.

set.
set.
set.
set.
set.
set.

set.

add (7) ;

add(54); // collides with 24

add(14); // collides with 24, then 54
add(86); // collides with 14, then 7

inde (0|1|2|3(4|5|6|7]|8|9

value| 011]0|0|24|54|14| 7 (86|49
1

— Now a lookup for 94 must look at 7 out of 10 total indexes.

10

e chaining: Resolving collisions by storing a list at each index.
— add/search/remove must traverse lists, but the lists are short
— impossible to "run out" of indexes, unlike with probing

inde (0|12 |3(4|5(6|7]|8]9

value | | | | A\ 1L\ L

\ v v \
11 24 / 49
54

11

Rehashing

e rehash: Growing to a larger array when the table is too full.
— Cannot simply copy the old array to a new one. (Why not?)

e load factor: ratio of (# of elements) |/ (hash table length)
— many collections rehash when load factor = .75

— can use big prime numbers as hash table sizes to reduce collisions

0(1(2|3|4|(5|6|7|8|9|1}1}1(1(1|1|1]1|1]1

V74 V4 i V474 i 74 I V4 VA Ve R VAvavd vd vd

v v s v v
24 7 | |49 11 54

12

Implementing hash maps

e A hash map is just a set where the lists store key/value pairs:

// key value
map.put ("Marty", 14);

(
map.put ("Jdeff", 21);
map.put ("Kasey", 20);
map.put ("Stef", 35);
inde |01]12|3|4|5|6]|7]|8]9
Value//l//l///l
"Stef" | 35 "Marty" | 14 "Jeff" | 2

l 1

llKaseyll y

— Instead of a List<Integer>, write an inner Entry node class
with key and value fields; the map stores a List<Entry> .

