Exploration Seminar 8 Machine Learning

Roy McElmurry

Data

- There are immense volumes of data available today
- It is estimated that Google owns over one million servers. It is unknown what there data storage capacity is.
- Data storage is becoming ridiculously cheap.
- It ten years you could record a babies life in HD for $\$ 100$.

The Problem

- We have immense amounts of data and lots of questions.
- We would like to solve these problems using the data that we have.

The Idea

- We are given a set of training examples that contain data points as well as answers to the question at hand.
- Using these examples, we construct a model that predicts the answer to the training examples with a high degree of success.
- Use our predictor to make educated guesses on new data points, to which we do not know the answer.
- We would like our predictor to be as fast as possible.

Potential Applications

- Google Ads
- Spam Detection
- Netflix Recommendations
- Traffic Light Timing
- Steering a Car
- Playing Chess

Example Question and Data

Is it a good day to play Ultimate Frisbee?

Day	Outlook	Temperature	Humidity	Wind	Frisbee?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cold	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	???

Decision Trees

- We can use a tree structure to represent the training data.
- Leaf nodes will be the value of the target attribute and other nodes will be attributes.
- Given a new data point we can traverse the tree until we reach a leaf and use the data in that node as our prediction

Algorithm

SimplifiedID3(data, target, availableAttributes):

- Choose an available attribute that best predicts the target attribute and place it at the root of the tree.
- Remove the chosen attribute from the available ones
- Split the examples into groups according to the values of the selected attribute
- Recursively create the children using one of the groups of examples and the remaining available attributes

Most Predictive Attribute

- Information Gain is a popular choice for quantifying how predictive an attribute is.

Entropy: $E(S)=\sum_{v \in \text { values }_{\text {arg } a t}}-P(v) \log (P(v))$

$$
\begin{aligned}
& \text { ex) } \mathrm{E}(\mathrm{~S})=-\mathrm{P}(+) \log (\mathrm{P}(+))-\mathrm{P}(-) \log (\mathrm{P}(-)) \\
&=-(5 / 9) \log (5 / 9)-(4 / 9) \log (4 / 9)=0.99
\end{aligned}
$$

Information Gain: $G(S, A)=E(S)-\sum_{v \in \text { values }} \frac{\left|S_{v}\right|}{|S|} E\left(S_{v}\right)$

Issues

- Over-fitting: We can build a tree that is too specific and can no longer make general predictions
- Objective Function: We only approximate the objective function based on what was seen, irregular data points will throw us off
- Continuous Data: Decision trees cannot represent continuous data with precision

Perceptron

- A perceptron is a function: $f(\vec{x})=\left\{\begin{array}{cc}1 & \vec{w} \cdot \vec{x}-b>0 \\ 0 & \text { otherwise }\end{array}\right\}$
- \vec{w} is a weight vector that tells us how important each component of \vec{x} is
- b is a threshold that determines at what point the perceptron's output changes
- The output of the perceptron can be thought of as a boolean output, either true of false

||, \& \&

- These simple functions take two inputs, what is the length of w
- Can we find a w and b such that our perceptron outputs values corresponding to those of the functions

Artificial Neural Network

Algorithm

Simplified Gradient Descent Algorithm:

- Initialize w randomly
- Until some sufficient criterion is met
- Initialize $\Delta \vec{w}$ to 0
- For each example in the training data of the form (\vec{x}, t)
- Let y be the output of the neural network given X
$\xrightarrow[\rightarrow]{\Delta \vec{w}}=\Delta \vec{w}+\eta(t-y)$
- $\vec{w}=\vec{w}+\Delta \vec{w}$

\wedge

- The xor function is the 'exclusive or' function and has the following truth table

	True	False
True	False	True
False	True	False

- Can we use perceptrons to model this function?
- Can we use neural networks to model this function?
\wedge

