
Iterators, Linked Lists,
MapReduce, Dictionaries,

and List Comprehensions...
OH MY!

Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.
Except where otherwise noted, this work is licensed under:

http://creativecommons.org/licenses/by-nc-sa/3.0

Thursday, March 4, 2010

2

Iterator

• Two special methods: __iter__ and __next__
• __iter__ sets up the iteration
• __next__ returns values one by one until the end

of the sequence is reached
• raise StopIteration to stop iteration
• now objects can be the target of for-each loops!

• may also define method: x.__contains__(y)
• supports sweet syntax sugar: y in x

Thursday, March 4, 2010

3

Iterator Examples

1
2
3
4
5
6
7
8
9
10
11
12
13
14

>>> class IterList:
... def __init__(self):
... self.list = [2,4,6,8]
...
... def __iter__(self):
... self.iter_count = 0
... return self
...
... def __next__(self):
... if (self.iter_count >= len(self.list)):
... raise StopIteration
... return self.list[self.iter_count]
>>> list = IterList()
>>> for element in list:
... print(element*2)
[4, 8, 12, 16]

Thursday, March 4, 2010

4

Map

 map(function, iterable, ...)

• Map applies function to each element of iterable
and creates a list of the results

• You can optionally provide more iterables as
parameters to map and it will place tuples in the
result list

• Map returns an iterator which can be cast to list

Thursday, March 4, 2010

5

Map Examples
1
2
3
4
5
6
7
8
9
10
11
12
13
14

>>> nums = [0, 4, 7, 2, 1, 0, 9, 3, 5, 6, 8, 0, 3]
>>> nums = list(map(lambda x : x % 5, nums))

>>> print(nums)
[0, 4, 2, 2, 1, 0, 4, 3, 0, 1, 3, 0, 3]

>>> def even (x):
... if (x % 2 == 0):

... return "even"

... else:

... return "odd"
>>> list (map(even, nums))
['even', 'even', 'odd', 'even', 'odd', 'even', 'odd',
'odd', 'odd', 'even', 'even', 'even', 'odd']

Thursday, March 4, 2010

6

Functions as Parameters

1
2
3
4
5
6
7
8
9
10

>>> list = ['once', 'upon', 'a', 'time', 'in', 'a']
>>> def foo (x):
... return x * 3
>>> bar = foo
>>> my_map (foo, list)
['onceonceonce', 'uponuponupon', 'aaa', 'timetimetime',
'ininin', 'aaa']
>>> my_map (bar, list)
['onceonceonce', 'uponuponupon', 'aaa', 'timetimetime',
'ininin', 'aaa']

Functions can be assigned to variables and/or passed as
parameters

Thursday, March 4, 2010

7

Map Code

1
2
3
4
5

>>> def my_map (fun, list):
... nlist = []
... for item in list:
... nlist.append(fun(item))
... return nlist

Thursday, March 4, 2010

8

Reduce
reduce(function, iterable[,initializer])

• Reduce will apply function to each element in iterable
along with the sum so far and create a cumulative sum of the
results

• function must take two parameters
• If initializer is provided, initializer will stand as the first

argument in the sum
• Unfortunately in python 3 reduce() requires an import

statement
• from functools import reduce

Thursday, March 4, 2010

9

Reduce Examples

1
2
3
4
5
6
7
8

>>> nums = [9, 2, 0, -4, 0, 0, 7, 5, 3, 8]
>>> reduce(lambda sum, current: sum + current, nums)
30
>>> foo = ['in', 'a', 'galaxy', 'far', 'far', 'away']
>>> reduce(lambda sum, current : sum + current, foo)
'inagalaxyfarfaraway'
>>> reduce(lambda x,y : x+y + “ “, foo, “once upon a time ”)
'once upon a time in a galaxy far far away '

Thursday, March 4, 2010

10

Reduce Examples

1
2
3
4
5
6
7

>>> numlists = [[1, 2, 3], [4, 5], [6, 7, 8, 9]]
>>> reduce(lambda sum, current: sum+current, numlists, [])
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> nums = [1, 2, 3, 4, 5, 6, 7, 8]
>>> nums = list(reduce(lambda x, y : (x, y), nums))
>>> print(nums)
(((((((1, 2), 3), 4), 5), 6), 7), 8)

Thursday, March 4, 2010

11

Reduce Problem
Goal: given a list of numbers I want to find the
average of those numbers in a few lines using reduce

For Loop Method:
 - sum up every element of the list
 - divide the sum by the length of the list

Thursday, March 4, 2010

12

Reduce Problem

 Solution Solution
1
2
3

>>> nums = [92, 27, 63, 43, 88, 8, 38, 91, 47, 74,
... 18, 16, 29, 21, 60, 27, 62, 59, 86, 56]
average = reduce(lambda x, y : x + y, nums) / len(nums)

Thursday, March 4, 2010

13

MapReduce
Framework for processing huge datasets on certain
kinds of distributable problems
Map Step:
- master node takes the input, chops it up into smaller
and distributes to smaller nodes
- smaller nodes may continue chopping recursively
Reduce Step:
- master node then takes the answers to all the sub-
problems and combines them in a way to get the
desired output

Thursday, March 4, 2010

14

MapReduce

Problem: Given an email how do you tell if it is spam?

Count occurrences of certain words. If they
occur too frequently the email is spam.

Thursday, March 4, 2010

15

MapReduce

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

>>> email = “Well, there's egg and bacon; egg sausage
and bacon; egg and spam; egg bacon and spam; egg bacon
sausage and spam; spam bacon sausage and spam; spam egg
spam spam bacon and spam; spam sausage spam spam bacon
spam tomato and spam;”
>>> email = email.split()
>>> def spamWeight (word):
 if ("spam" in word):
 return 1
 else:
 return 0
>>> list(map (spamWeight, email))
[0, 0, ... 1, 0, 0, 1]
>>> reduce(lambda x, xs: x + xs, map(spamWeight, email))
14

Thursday, March 4, 2010

16

Dictionaries

map keys, which can be any immutable type, to
values, which can be any type

1
2
3
4
5
6
7

>>> # declaring an empty dictionary
>>> eng2sp = {}
>>> # adding values
>>> eng2sp['one'] = 'uno'
>>> eng2sp['two'] = 'dos'
>>> # declaring dictionary with initial values
>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three':'tres'}

Thursday, March 4, 2010

17

Dictionaries
Operations:
 - print, del, len, in
Methods:
 - keys(), values(), items()

1
2

>>> eng2sp.items()
[('three', 'tres'), ('two', 'dos'), ('one', 'uno')]

Thursday, March 4, 2010

18

List Comprehensions

 [expression for element in list]

• Applies the expression to each element in the list
• You can have 0 or more for or if statements
• If the expression evaluates to a tuple it must be in

parenthesis

Thursday, March 4, 2010

19

List Comprehensions

1
2
3
4
5
6
7
8
9
10
11
12
13
14

>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]

>>> [3*x for x in vec if x > 3]
[12, 18]

>>> [3*x for x in vec if x < 2]
[]
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]

>>> [x, x**2 for x in vec]
SyntaxError: invalid syntax (requires parens)

Thursday, March 4, 2010

20

List Comprehensions
You can do most things that you can do with map, filter and
reduce more nicely with list comprehensions

The email spam program from earlier using list
comprehensions:

1
2
3
4

>>> email = ['once', 'upon', 'a', 'time', 'in', 'a', 'far']
>>> len([1 for x in email if x == 'a'])
2

Thursday, March 4, 2010

