
Iterators, Linked Lists,
MapReduce, Dictionaries,  

and List Comprehensions...
OH MY!
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Iterator

• Two special methods: __iter__ and __next__
• __iter__ sets up the iteration
• __next__ returns values one by one until the end 

of the sequence is reached
• raise StopIteration to stop iteration
• now objects can be the target of for-each loops!

• may also define method: x.__contains__(y)
• supports sweet syntax sugar: y in x
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Iterator Examples
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>>> class IterList:
...    def __init__(self):
...       self.list = [2,4,6,8]
...
...    def __iter__(self):
...       self.iter_count = 0
...       return self
...
...    def __next__(self):
...       if (self.iter_count >= len(self.list)):
...          raise StopIteration
...       return self.list[self.iter_count]
>>> list = IterList()
>>> for element in list:
...    print(element*2)
[4, 8, 12, 16]
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Map

   map(function, iterable, ...)

• Map applies function to each element of iterable 
and creates a list of the results

• You can optionally provide more iterables as 
parameters to map and it will place tuples in the 
result list

• Map returns an iterator which can be cast to list
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Map Examples
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>>> nums = [0, 4, 7, 2, 1, 0, 9, 3, 5, 6, 8, 0, 3]
>>> nums = list(map(lambda x : x % 5, nums))

>>> print(nums)      
[0, 4, 2, 2, 1, 0, 4, 3, 0, 1, 3, 0, 3]

>>> def even (x):
...    if (x % 2 == 0):

...            return "even"

...    else:

...            return "odd"
>>> list (map(even, nums))
['even', 'even', 'odd', 'even', 'odd', 'even', 'odd', 
'odd', 'odd', 'even', 'even', 'even', 'odd']
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Functions as Parameters
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>>> list = ['once', 'upon', 'a', 'time', 'in', 'a']
>>> def foo (x):
...     return x * 3
>>> bar = foo
>>> my_map (foo, list)
['onceonceonce', 'uponuponupon', 'aaa', 'timetimetime', 
'ininin', 'aaa']
>>> my_map (bar, list)
['onceonceonce', 'uponuponupon', 'aaa', 'timetimetime', 
'ininin', 'aaa']

Functions can be assigned to variables and/or passed as 
parameters
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Map Code
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>>> def my_map (fun, list):
...     nlist = []
...     for item in list:
...             nlist.append(fun(item))
...     return nlist

Thursday, March 4, 2010



8

Reduce
reduce(function, iterable[,initializer])

• Reduce will apply function to each element in iterable 
along with the sum so far and create a cumulative sum of the 
results

• function must take two parameters
• If initializer is provided, initializer will stand as the first 

argument in the sum
• Unfortunately in python 3 reduce() requires an import 

statement
• from functools import reduce
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Reduce Examples
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>>> nums = [9, 2, 0, -4, 0, 0, 7, 5, 3, 8]
>>> reduce(lambda sum, current: sum + current, nums)
30
>>> foo = ['in', 'a', 'galaxy', 'far', 'far', 'away']
>>> reduce(lambda sum, current : sum + current, foo)
'inagalaxyfarfaraway'
>>> reduce(lambda x,y : x+y + “ “, foo, “once upon a time ”)
'once upon a time in a galaxy far far away '
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Reduce Examples
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>>> numlists = [[1, 2, 3], [4, 5], [6, 7, 8, 9]]
>>> reduce(lambda sum, current: sum+current, numlists, [])
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> nums = [1, 2, 3, 4, 5, 6, 7, 8]
>>> nums = list(reduce(lambda x, y : (x, y), nums))
>>> print(nums)
(((((((1, 2), 3), 4), 5), 6), 7), 8)
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Reduce Problem
Goal: given a list of numbers I want to find the 
average of those numbers in a few lines using reduce

 
For Loop Method: 
 - sum up every element of the list
 - divide the sum by the length of the list
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Reduce Problem

  Solution  Solution
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2
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>>> nums = [92, 27, 63, 43, 88, 8, 38, 91, 47, 74,
...         18, 16, 29, 21, 60, 27, 62, 59, 86, 56]
average = reduce(lambda x, y : x + y, nums) / len(nums)
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MapReduce
Framework for processing huge datasets on certain 
kinds of distributable problems
Map Step: 
- master node takes the input, chops it up into smaller 
and distributes to smaller nodes
- smaller nodes may continue chopping recursively
Reduce Step: 
- master node then takes the answers to all the sub-
problems and combines them in a way to get the 
desired output
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MapReduce

Problem: Given an email how do you tell if it is spam?

Count occurrences of certain words. If they    
occur too frequently the email is spam.
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MapReduce
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>>> email = “Well, there's egg and bacon; egg sausage 
and bacon; egg and spam; egg bacon and spam; egg bacon 
sausage and spam; spam bacon sausage and spam; spam egg 
spam spam bacon and spam; spam sausage spam spam bacon 
spam tomato and spam;”
>>> email = email.split()
>>> def spamWeight (word):
        if ("spam" in word):
                return 1
        else:
                return 0
>>> list(map (spamWeight, email))
[0, 0, ... 1, 0, 0, 1]
>>> reduce(lambda x, xs: x + xs, map(spamWeight, email))
14
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Dictionaries

map keys, which can be any immutable type, to 
values, which can be any type
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>>> # declaring an empty dictionary
>>> eng2sp = {}
>>> # adding values
>>> eng2sp['one'] = 'uno'
>>> eng2sp['two'] = 'dos'
>>> # declaring dictionary with initial values
>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three':'tres'}
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Dictionaries
Operations: 
 - print, del, len, in
Methods: 
 - keys(), values(), items()

1
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>>> eng2sp.items()
[('three', 'tres'), ('two', 'dos'), ('one', 'uno')]
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List Comprehensions

         [expression for element in list]

• Applies the expression to each element in the list
• You can have 0 or more for or if statements
• If the expression evaluates to a tuple it must be in 

parenthesis 
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List Comprehensions
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>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]

>>> [3*x for x in vec if x > 3]
[12, 18]

>>> [3*x for x in vec if x < 2]
[]
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]

>>> [x, x**2 for x in vec] 
SyntaxError: invalid syntax (requires parens)
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List Comprehensions
You can do most things that you can do with map, filter and 
reduce more nicely with list comprehensions

The email spam program from earlier using list 
comprehensions:
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>>> email = ['once', 'upon', 'a', 'time', 'in', 'a', 'far']
>>> len( [1 for x in email if x == 'a'] )
2
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