
Built-In Functions

Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.
Except where otherwise noted, this work is licensed under:

http://creativecommons.org/licenses/by-nc-sa/3.0

2

Exceptions
 raise type(message)
 raise Exception(message)

Exceptions
AssertionError

TypeError

NameError

ValueError

IndexError

SyntaxError

ArithmeticError

http://docs.python.org/library/exceptions.html#bltin-exceptions

3

__str__()
•  We already know about the __str__() method that allows a

class to convert itself into a string

rectangle.py

1
2
3
4
5
6
7
8
9

class Rectangle:
 def __init__(self, x, y, width, height):
 self.x = x
 self.y = y
 self.width = width
 def __str__(self):
 return "(x=" + str(self.x) + ",y=" +
 str(self.y) + ",w=" + str(self.width) +
 ",h=" + str(self.height) + ")"

4

Underscored methods
•  There are many other underscored methods that allow the

built-in function of python to work
•  Most of the time the underscored name matches the built-in

function name

Built-In Class Method
str() __str__()

len() __len__()

abs() __abs__()

5

First Class Citizens
•  For built-in types like ints and strings we can use

operators like + and *.
•  Our classes so far were forced to take back routes and use

methods like add() or remove()
•  Python is super cool, in that it allows us to define the usual

operators for our class
•  This brings our classes up to first class citizen status just

like the built in ones

6

Underscored methods
•  There are underscore methods that you can implement in

order to define logical operations and arithmetic operations

Operator Class Method
- __neg__(self,other)

+ __pos__(self, other)

* __mul__(self, other)

/ __truediv__(self, other)

Binary Operators Comparison Operators

Unary Operators

Operator Class Method
- __neg__(self)

+ __pos__(self)

Operator Class Method
== __eq__(self,other)

!= __ne__(self, other)

< __lt__(self, other)

> __gt__(self, other)

<= __le__(self, other)

>= __ge__(self, other)

N/A __nonzero__(self)

http://docs.python.org/reference/datamodel.html#sequence-types

7

ArrayIntList Operations
Lets write a method that we could add to arrayintlist.py that

would allow us to apply the /= operation to the list. The
operation would simply divide all elements of the list by the
argument of the operator

Method: __itruediv__(self, num)

Example run

1
2
3
4

print(int_list) #[1, 2, 3, 4, 5, 6, 7]
int_list /= 2
print(int_list) #[0.0, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5]

8

Solution

arrayintlist.py

1
2
3
4
5
6
7

def __itruediv__(self, num):
 if num == 0 :
 raise ArithmeticError(“Can't divide by zero.")
 for i in list(range(len(self))) :
 self.elementData[i] /= num
 return self

9

Lambda
•  Sometimes you need a simply arithmetic function
•  Its silly to write a method for it, but redundant not too
•  With lambda we can create quick simple functions
•  Facts

–  Lambda functions can only be comprised of a single
expression

–  No loops, no calling other methods
–  Lambda functions can take any number of variables

Syntax:
 lambda param1,…,paramn : expression

10

Lambda Syntax
lambda.py

1
2
3
4
5
6
7
8
9
0
1
2
3

#Example 1
square_func = lambda x : x**2
square_func(4) #return: 16

#Example 2
close_enough = lambda x, y : abs(x – y) < 3
close_enough(2, 4) #return: True

#Example 3
def get_func(n) :
 return lambda x : x * n + x % n
my_func = get_func(13)
my_func(4) #return: 56

11

Higher-Order Functions
•  A higher-order function is a function that takes another

function as a parameter
•  They are “higher-order” because it’s a function of a function
•  Examples

–  Map
–  Reduce
–  Filter

•  Lambda works great as a parameter to higher-order
functions if you can deal with its limitations

12

Filter

 filter(function, iterable)

•  The filter runs through each element of iterable (any
iterable object such as a List or another collection)

•  It applies function to each element of iterable
•  If function returns True for that element then the

element is put into a List
•  This list is returned from filter in versions of python under

3
•  In python 3, filter returns an iterator which must be cast

to type list with list()

13

Filter Example

Example

1
2
3
4
5
6

nums = [0, 4, 7, 2, 1, 0 , 9 , 3, 5, 6, 8, 0, 3]

nums = list(filter(lambda x : x != 0, nums))

print(nums) #[4, 7, 2, 1, 9, 3, 5, 6, 8, 3]

14

Filter Problem
NaN = float("nan")

scores = [[NaN, 12, .5, 78, math.pi],
 [2, 13, .5, .7, math.pi / 2],

 [2, NaN, .5, 78, math.pi],
 [2, 14, .5, 39, 1 - math.pi]]

Goal: given a list of lists containing answers to an
algebra exam, filter out those that did not submit a
response for one of the questions, denoted by NaN

15

Filter Problem
Solution

1
2
3
4
5
6
7
8
9
0
1
2
3
4

NaN = float("nan")
scores = [[NaN, 12, .5, 78, pi],[2, 13, .5, .7, pi / 2],
 [2,NaN, .5, 78, pi],[2, 14, .5, 39, 1 - pi]]
#solution 1 - intuitive
def has_NaN(answers) :
 for num in answers :
 if isnan(float(num)) :
 return False
 return True

valid = list(filter(has_NaN, scores))
print(valid2)
#Solution 2 – sick python solution
valid = list(filter(lambda x : NaN not in x, scores))
print(valid)

16

Map

 map(function, iterable, ...)

•  Map applies function to each element of iterable
and creates a list of the results

•  You can optionally provide more iterables as
parameters to map and it will place tuples in the
result list

•  Map returns an iterator which can be cast to list

17

Map Example

Example

1
2
3
4
5
6
7

nums = [0, 4, 7, 2, 1, 0 , 9 , 3, 5, 6, 8, 0, 3]

nums = list(map(lambda x : x % 5, nums))

print(nums)
#[0, 4, 2, 2, 1, 0, 4, 3, 0, 1, 3, 0, 3]

18

Map Problem
Goal: given a list of three dimensional points in the

form of tuples, create a new list consisting of the
distances of each point from the origin

Loop Method:
 - distance(x, y, z) = sqrt(x**2 + y**2 + z**2)
 - loop through the list and add results to a new list

19

Map Problem

Solution

1
2
3
4
5
6
7
8
9

from math import sqrt

points = [(2, 1, 3), (5, 7, -3), (2, 4, 0), (9, 6, 8)]

def distance(point) :
 x, y, z = point
 return sqrt(x**2 + y**2 + z**2)

distances = list(map(distance, points))

20

Reduce
reduce(function, iterable[,initializer])

•  Reduce will apply function to each element in iterable
along with the sum so far and create a cumulative sum of the
results

•  function must take two parameters
•  If initializer is provided, initializer will stand as the first

argument in the sum
•  Unfortunately in python 3 reduce() requires an import

statement
•  from functools import reduce

21

Reduce Example

Example

1
2
3
4
5
6
7

nums = [1, 2, 3, 4, 5, 6, 7, 8]

nums = list(reduce(lambda x, y : (x, y), nums))

Print(nums) #(((((((1, 2), 3), 4), 5), 6), 7), 8)

22

Reduce Problem
Goal: given a list of numbers I want to find the

average of those numbers in a few lines using
reduce()

For Loop Method:
 - sum up every element of the list
 - divide the sum by the length of the list

23

Reduce Problem

Solution

1

2
3
4

nums = [92, 27, 63, 43, 88, 8, 38, 91, 47, 74, 18, 16,
 29, 21, 60, 27, 62, 59, 86, 56]

sum = reduce(lambda x, y : x + y, nums) / len(nums)

