CSE 143
Lecture 26

Advanced collection classes
(ADTs; abstract classes; inner classes; generics; iterators)

read 11.1, 9.6, 15.3-15.4, 16.4-16.5

slides created by Marty Stepp, adapted by Alyssa Harding
http://www.cs.washington.edu/143/

http://www.cs.washington.edu/143/

Our list classes

e We implemented the following two list classes:

— ArrayIntList index| 0 |1 2
value (42 -3 |17

_ LinkedIntList data | next data | next data | next
front — 42 +| -3 17|

— Problems:
e We should be able to treat them the same way in client code.
* They can store only int elements, not any type of value.
e Some of their methods are implemented the same way (redundancy).
e Linked list carries around a clunky extra node class.
e It is inefficient to get or remove each element of a linked list.

Recall: ADT interfaces (11.1)

o abstract data type (ADT): A specification of a collection of
data and the operations that can be performed on it.

— Describes what a collection does, not Aow it does it.

e Java's collection framework describes ADTs with interfaces:
— Collection, Deque, List, Map, Queue, Set, SortedMap

e An ADT can be implemented in multiple ways by classes:
— ArrayList and LinkedList implement List

— HashSet and TreeSet implement set
- LinkedList , ArrayDeque, etc. implement Queue

e Exercise: Create an ADT interface for the two list classes.

An IntlList Iinterface (16.4)

// Represents a list of integers.

public interface IntList {
public void add(int wvalue);
public void add(int i1index, 1int value);
public boolean contains (int wvalue);
public int get(int 1index);
public int 1ndexOf (i1nt wvalue);
public boolean isEmpty () ;
public void remove (int 1ndex);
public void set(int 1ndex, 1nt wvalue);
public int size();

}

public class ArrayIntList implements IntList { ...
public class LinkedIntList implements IntList { ...

Our list classes

e We have implemented the following two list collection classes:

— ArrayIntList index| 0 |1 2
value (42 -3 |17

_ LinkedIntList data | next data | next data | next
front — 42 +| -3 17|

— Problems:
e We should be able to treat them the same way in client code.
e They can store only int elements, not any type of value.
e Some methods are implemented the same way (redundancy).
e Linked list carries around a clunky extra node class.
e It is inefficient to get or remove each element of a linked list.

Type Parameters (Generics)

ArrayList<Type> name = new ArrayList<Type> () ;

e Recall: When constructing a java.util.ArrayList, you
specify the type of elements it will contain between < and >.

— We say that the ArrayList class accepts a type parameter,
or that it is a generic class.

ArraylList<String> names = new ArrayList<String> () ;
names.add ("Marty Stepp");
names.add ("Stuart Reges");

Implementing generics

// a parameterized (generic) class
public class name<Type> {

J

— By putting the Type in < >, you are demanding that any client
that constructs your object must supply a type parameter.
e You can require multiple type parameters separated by commas.

— The rest of your class's code can refer to that type by name.

o Exercise: Convert our list classes to use generics.

Generics and arrays (i5.4)

public class Foo<T> {
private T myField; // ok

public void methodl (T param) {
myField = new T(); // error
T[] a = new T[10]; // error

— You cannot create objects or arrays of a parameterized type.

Generics/arrays, fixed

public class Foo<T> {
private T myField; // ok

public void methodl (T param) {
myField = param; // ok
T[] a2 = (T[]) (new Object[10]); // ok

— But you can create variables of that type, accept them as
parameters, return them, or create arrays by casting Object[].

Generic interface (1s.3, 16.5)

// Represents a list of values.
public interface List<E> {

public
public
public
public
public
public
public
public
}

vold add(E value);

vold add(int index, E wvalue);
E get(i1nt index);

int 1ndexOf (E value);

boolean isEmpty () ;

vold remove (1nt i1ndex);

vold set (int index, E wvalue);
int size();

public class ArrayIntList<E> implements IntList<E> { ...
public class LinkedIntList<E> implements IntList<E> { ...

10

Our list classes

e We have implemented the following two list collection classes:

— ArrayIntList index| 0 |1 2
value (42 -3 |17

_ LinkedIntList data | next data | next data | next
front — 42 +| -3 17|

— Problems:
e We should be able to treat them the same way in client code.
e They can store only int elements, not any type of value.

* Some of their methods are implemented the same way
(redundancy).

e Linked list carries around a clunky extra node class.
o It is inefficient to get or remove each element of a linked list. 11

Common code

» Notice that some of the methods can be implemented the
same way in both the array and linked list classes.

— add (value)
— contains

— 1sEmpty

e Should we change our interface to a class? Why / why not?
— How can we capture this common behavior?

12

Abstract classes (9.6)

o abstract class: A hybrid between an interface and a class.

— defines a superclass type that can contain method declarations
(like an interface) and/or method bodies (like a class)

— like interfaces, abstract classes that cannot be instantiated
(cannot use new to create any objects of their type)

e What goes in an abstract class?

— implementation of common state and behavior that will be
inherited by subclasses (parent class role)

— declare generic behaviors that subclasses must implement
(interface role)

13

Abstract class syntax

// declaring an abstract class
public abstract class hname ({

// declaring an abstract method
// (any subclass must implement it)
public abstract type name (parameters) ;

e A class can be abstract even if it has no abstract methods
e You can create variables (but not objects) of the abstract type

e Exercise: Introduce an abstract class into the list hierarchy. 14

Abstract and interfaces

e Normal classes that claim to implement an interface must
implement all methods of that interface:

public class Empty implements List<E> {} // error

e Abstract classes can claim to implement an interface without
writing its methods; subclasses must implement the methods.

public abstract class Empty implements List<E> {} // ok

public class Child extends Empty {} // error

15

An abstract list class

// Superclass with common code for a list of E.
public abstract class AbstractList<E> implements List<E> {
public void add(E wvalue) {
add (size (), wvalue):;

}

public boolean contains (E value) {
return indexOf (value) >= 0;

}

public boolean isEmpty () {
return size () == 0;

}

public class ArrayList<E> extends AbstractList<E> { ...

public class LinkedList<E> extends AbstractList<E> { ...

16

Abstract class vs. interface

e Why do both interfaces and abstract classes exist in Java?
— An abstract class can do everything an interface can do and more.
— So why would someone ever use an interface?

e Answer: Java has single inheritance.
— can extend only one superclass
— can implement many interfaces

— Having interfaces allows a class to be part of a hierarchy
(polymorphism) without using up its inheritance relationship.

17

Our list classes

e We have implemented the following two list collection classes:

— ArrayIntList index| 0 |1 2
value (42 -3 |17

_ LinkedIntList data | next data | next data | next
front —| 42 +| -3 |17 | —

— Problems:
e We should be able to treat them the same way in client code.
e They can store only int elements, not any type of value.
e Some of their methods are implemented the same way (redundancy).
e Linked list carries around a clunky extra node class.

e It is inefficient to get or remove each element of a linked list.
18

e inner class: A class defined inside of another class.
— can be created as static or non-static

— we will focus on standard non-static ("nested") inner classes

e usefulness:
— inner classes are hidden from other classes (encapsulated)
— inner objects can access/modify the fields of the outer object

Instance of
EnclosingClass Instance of

Ihnerilass

19

Inner class syntax

// outer (enclosing) class
public class name ({

// inner (nested) class
private class name

J

— Only this file can see the inner class or make objects of it.

— Each inner object is associated with the outer object that created
it, so it can access/modify that outer object's methods/fields.
e If necessary, can refer to outer object as OuterClassName. this

— Exercise: Convert the linked node into an inner class. 20

Generics and inner classes

public class Foo<T> {

private class Inner<T> {} // incorrect

private class Inner {} // correct

— If an outer class declares a type parameter, inner classes can also
use that type parameter.

— Inner class should NOT redeclare the type parameter. (If you do,
it will create a second type parameter with the same name.)

21

Our list classes

e We have implemented the following two list collection classes:

— ArrayIntList index| 0 |1 2
value (42 -3 |17

_ LinkedIntList data | next data | next data | next
front —| 42 +| -3 17| —

— Problems:
e We should be able to treat them the same way in client code.
e Some of their methods are implemented the same way (redundancy).
e Linked list carries around a clunky extra node class.
e They can store only int elements, not any type of value.

o It is inefficient to get or remove each element of a linked list.
22

Linked list iterator

e The following code is particularly slow on linked lists:

List<Integer> 1list = new LinkedList<Integer> ()

public String toString () {

1if (size() == 0) {
return "[]";
} else {
String result = "[" + get(0);
for (int i = 1; i < size(); i++) {
result += ", " + get(i);

}

return result + "]";

23

Complexity comparison

method ArrayList LinkedList
isEmpty () O(1) o(n)
contains () O(n) Oo(n)
add (value) O(n) Oo(n)
toString() O(n) Oo(n?)

e Ouch!

e Our code worked pretty well for ArrayList,
but not LinkedList

e Can we both reduce redundancy and maintain efficiency?

24

Recall: Iterators (11.1)

e iterator: An object that allows a client to traverse the
elements of a collection, regardless of its implementation.
— Remembers a position within a collection, and allows you to:
e get the element at that position
e advance to the next position
* (possibly) remove or change the element at that position

— Benefit: A common way to examine any collection's elements.

index| 0 |1] 2 data | next data | next data | next

value |42 |-3|17 front —{ 42 +| -3 | 17 |]
itarator current element: -3 iterato current element: -3
current index: 1 ILerator current index: 1

25

Iterator methods

hasNext () | returns true if there are more elements to examine

next () returns the next element from the collection (throws a
NoSuchElementException if there are none left to examine)

remove () | removes from the collection the last value returned by next ()

(throws I1legalStateException if you have not called
next () yet)

— every provided collection has an iterator method

Set<String> set = new HashSet<String> () ;

Iterator<String> itr = set.iterator()

e Exercise: Write iterators for our array list and linked list.

— You don't need to support the remove operation.

26

Array list iterator

public class ArrayList<E> extends AbstractIntList<E> {

// not perfect; doesn't forbid multiple removes in a row

. p | p

private class Arraylterator implements Iterator<E> {
private int index; // current position in list

public ArrayIterator () {
index = 0;
}

public boolean hasNext () {
return index < size();
}

public E next () {
index++;
return get(index - 1);

}

public void remove () {
ArraylList.this.remove (index - 1);
index--;

27

Linked list iterator

public class LinkedList<E> extends AbstractIntList<E> {

// not perfect; doesn't support remove

. P | pPpo1

private class LinkedIterator i1mplements Iterator<kE> {
private ListNode current; // current position in list

public LinkedIterator () {
current = front;
}

public boolean hasNext () {
return current != null;
}

public E next () {
E result = current.data;
current = current.next;
return result;

}

public void remove () { // not implemented for now
throw new UnsupportedOperationkException();
}

28

for-each loop and Iterable

e Java's collections can be iterated using a "for-each" loop:
List<String> list = new LinkedList<String>()

for (String s : list) {
System.out.println(s);
}

— Our collections do not work in this way.

e To fix this, your list must implement the Tterable interface.

public interface Iterable<E> {
public Iterator<E> iterator():;

}

29

Final List interface (1s.3, 16.5)

// Represents a list of values.
public interface List<E> extends Iterable<E> ({

public
public
public
public
public
public
public
public
public

vold add(E value);

vold add(int index, E wvalue);
E get(int index);

int 1ndexOf (E value);

boolean 1sEmpty () ;
Iterator<E> iterator () ;

vold remove (int index);

vold set (int index, E wvalue);
int size();

30

