
CSE 143
Lecture 23

Polymorphism; the Object class

read 9.2 - 9.3

slides created by Marty Stepp and Ethan Apter
http://www.cs.washington.edu/143/

2

Polymorphism

• polymorphism: Ability for the same code to be used with
different types of objects and behave differently with each.

– System.out.println can print any type of object.
• Each one displays in its own way on the console.

– A Scanner can read data from any kind of InputStream.

– Every kind of OutputStream can write data, though they might
write this to different kinds of sources.

3

Coding with polymorphism
• A variable of type T can refer to an object of any subclass of T.

Employee ed = new Lawyer();
Object otto = new Secretary();

– You can call any methods from Employee on ed.
– You can not call any methods specific to Lawyer (e.g. sue).

• When a method is called on ed, it behaves as a Lawyer.
System.out.println(ed.getSalary()); // 50000.0
System.out.println(ed.getVacationForm()); // pink

4

Polymorphism/parameters
• You can pass any subtype of a parameter's type.

public class EmployeeMain {
public static void main(String[] args) {

Lawyer lisa = new Lawyer();
Secretary steve = new Secretary();
printInfo(lisa);
printInfo(steve);

}

public static void printInfo(Employee empl) {
System.out.println("salary = " + empl.getSalary());
System.out.println("days = " + empl.getVacationDays());
System.out.println("form = " + empl.getVacationForm());
System.out.println();

}
}

OUTPUT:
salary = 50000.0 salary = 50000.0
vacation days = 21 vacation days = 10
vacation form = pink vacation form = yellow

5

Coding with polymorphism
• We can use polymorphism with classes like OutputStream.

– Recall methods common to all OutputStreams:

– Recall part of the inheritance hierarchy for OutputStream:

Method Description
write(int b) writes a byte
close() stops writing (also flushes)
flush() forces any writes in buffers to be written

OutputStream

FileOutputStream

PrintStream

FilterOutputStream

6

Streams and polymorphism
• A variable of type T can refer to an object of any subclass of T.

OutputStream out = new PrintStream(new File("foo.txt"));
OutputStream out2 = new FileOutputStream("foo.txt");

– You can call any methods from OutputStream on out.
– You can not call methods specific to PrintStream (println).

• But how would we call those methods on out if we wanted to?

• When out runs a method, it behaves as a PrintStream.
out.write(0); // writes a 0 byte to foo.txt
out.close(); // closes the stream to foo.txt

7

Polymorphism examples

• You can use the object's extra functionality by casting.

OutputStream out = new PrintStream(new
File("foo.txt"));

out.write(0); // ok

out.println("hello"); // compiler
error

((PrintStream) out).println("hello"); // ok

out.close(); // ok

• You can't cast an object into something that it is not.
Such code might compile, but it will crash at runtime.

OutputStream out2 = new FileOutputStream("foo txt");

8

Polymorphism mystery
• 4-5 classes with inheritance relationships are shown.

• A client program calls methods on objects of each class.
– Some questions involve type-casting.
– Some lines of code are illegal and produce errors.

• You must read the code and determine its output or errors.
– For output, you must be precise
– For errors, you need only say that an error occurred (not identify

what kind of error occurred)

• We always place such a question on our final exams!

9

Polymorphism mystery
• Steps to solving polymorphism mystery problems:

1. Look at the variable type. (If there is a cast, look at the casted
variable type.) If the variable type does not have the requested
method the compiler will report an error.

2. If there was a cast, make sure the casted variable type is
compatible with the object type (i.e. ensure the object type is a
subclass of the variable type). If they are not compatible, a
runtime error (ClassCastException) will occur.

3. Execute the method in question, behaving like the object type.
(The variable type and casted variable type no longer matter.)

10

Exercise
• Assume that the following classes have been declared:

public class Snow {
public void method2() {

System.out.println("Snow 2");
}

public void method3() {
System.out.println("Snow 3");

}
}

public class Rain extends Snow {
public void method1() {

System.out.println("Rain 1");
}

public void method2() {
System.out.println("Rain 2");

}
}

11

Exercise

public class Sleet extends Snow {
public void method2() {

System.out.println("Sleet 2");
super.method2();
method3();

}

public void method3() {
System.out.println("Sleet 3");

}
}

public class Fog extends Sleet {
public void method1() {

System.out.println("Fog 1");
}

public void method3() {
System.out.println("Fog 3");

}
}

12

Exercise

What happens when the following examples are executed?

• Example 1:

Snow var1 = new Sleet();
var1.method2();

• Example 2:

Snow var2 = new Rain();
var2.method1();

• Example 3:

Snow var3 = new Rain();
((Sleet) var3).method3();

13

Technique 1: diagram
• Diagram the classes from top (superclass) to bottom.

14

Technique 2: table

method Snow Rain Sleet Fog
method1

method2

method3

Italic - inherited behavior
Bold - dynamic method call

method Snow Rain Sleet Fog
method1 Rain 1 Fog 1

method2 Snow 2 Rain 2 Sleet 2

Snow 2

method3()

Sleet 2

Snow 2

method3()

method3 Snow 3 Snow 3 Sleet 3 Fog 3

15

Example 1
• Example:

Snow var1 = new Sleet();
var1.method2();

• Output:

Sleet 2
Snow 2
Sleet 3

object

variable

16

Example 2
• Example:

Snow var2 = new Rain();
var2.method1();

• Output:

None!
There is an error,
because Snow does not
have a method1.

variable

object

17

Example 3
• Example:

Snow var3 = new Rain();
((Sleet) var3).method2();

• Output:

None!
There is an error
because a Rain is
not a Sleet.

object variable

18

The Object class

read 9.3

19

Class Object
• All types of objects have a superclass named Object.

– Every class implicitly extends Object

• The Object class defines several methods:

– public String toString()
Returns a text representation of the object,
often so that it can be printed.

– public boolean equals(Object other)
Compare the object to any other for equality.
Returns true if the objects have equal state.

20

Object variables
• You can store any object in a variable of type Object.

Object o1 = new Point(5, -3);
Object o2 = "hello there";
Object o3 = new Scanner(System.in);

• An Object variable only knows how to do general things.
String s = o1.toString(); // ok
int len = o2.length(); // error
String line = o3.nextLine(); // error

• You can write methods that accept an Object parameter.
public void checkForNull(Object o) {

if (o == null) {
throw new IllegalArgumentException();

}
}

21

Recall: comparing objects
• The == operator does not work well with objects.

== compares references to objects, not their state.
It only produces true when you compare an object to itself.

Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
if (p1 == p2) { // false

System.out.println("equal");
}

...

x 5 y 3p1

p2

...

x 5 y 3

22

The equals method

• The equals method compares the state of objects.

if (str1.equals(str2)) {

System.out.println("the strings are equal");
}

• But if you write a class, its equals method behaves like ==

if (p1.equals(p2)) { // false :-(
System.out.println("equal");

}

– This is the behavior we inherit from class Object.

– Java doesn't understand how to compare Points by default.

23

Flawed equals method

• We can change this behavior by writing an equals method.

– Ours will override the default behavior from class Object.

– The method should compare the state of the two objects and
return true if they have the same x/y position.

• A flawed implementation:
public boolean equals(Point other) {

if (x == other.x && y == other.y) {
return true;

} else {
return false;

}
}

24

Flaws in our method
• The body can be shortened to the following:

// boolean zen

return x == other.x && y == other.y;

• It should be legal to compare a Point to any object
(not just other Points):

// this should be allowed
Point p = new Point(7, 2);
if (p.equals("hello")) { // false

...

– equals should always return false if a non-Point is passed.

25

equals and Object
public boolean equals(Object name) {

statement(s) that return a boolean value ;

}

– The parameter to equals must be of type Object.

– Object is a general type that can match any object.

– Having an Object parameter means any object can be passed.
• If we don't know what type it is, how can we compare it?

26

Another flawed version
• Another flawed equals implementation:

public boolean equals(Object o) {
return x == o.x && y == o.y;

}

• It does not compile:
Point.java:36: cannot find symbol
symbol : variable x
location: class java.lang.Object
return x == o.x && y == o.y;

^

– The compiler is saying,
"o could be any object. Not every object has an x field."

27

Type-casting objects
• Solution: Type-cast the object parameter to a Point.

public boolean equals(Object o) {
Point other = (Point) o;
return x == other.x && y == other.y;

}

• Casting objects is different than casting primitives.
– Really casting an Object reference into a Point reference.

– Doesn't actually change the object that was passed.
– Tells the compiler to assume that o refers to a Point object.

28

Casting objects diagram
• Client code:

Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
if (p1.equals(p2)) {

System.out.println("equal");
}

public boolean equals(Object o) {
Point other = (Point) o;
return x == other.x && y == other.y;

}

3y5x

p1

p2

...

3y5x

o

other

29

Comparing different types
Point p = new Point(7, 2);
if (p.equals("hello")) { // should be false

...
}

– Currently our method crashes on the above code:

Exception in thread "main"
java.lang.ClassCastException: java.lang.String

at Point.equals(Point.java:25)
at PointMain.main(PointMain.java:25)

– The culprit is the line with the type-cast:

public boolean equals(Object o) {
Point other = (Point) o;

30

The instanceof keyword
if (variable instanceof type) {

statement(s);
}

• Asks if a variable refers
to an object of a given type.
– Used as a boolean test.

String s = "hello";
Point p = new Point();

falsenull instanceof Object

falsep instanceof String

truep instanceof Object

falsenull instanceof String

trues instanceof Object

truep instanceof Point

trues instanceof String

falses instanceof Point

resultexpression

31

Final equals method

// Returns whether o refers to a Point object with
// the same (x, y) coordinates as this Point.
public boolean equals(Object o) {

if (o instanceof Point) {
// o is a Point; cast and compare it
Point other = (Point) o;
return x == other.x && y == other.y;

} else {
// o is not a Point; cannot be equal
return false;

}
}

