
CSE 143
Lecture 15

Sets and Maps; Iterators

reading: 11.1 - 11.3; 13.2

slides created by Marty Stepp
http://www.cs.washington.edu/143/

2

Exercise
• Write a program that counts the number of unique words in a

large text file (say, Moby Dick or the King James Bible).

– Store the words in a collection and report the # of unique words.

– Once you've created this collection, allow the user to search it to
see whether various words appear in the text file.

• What collection is appropriate for this problem?

3

Empirical analysis (13.2)
Running a program and measuring its performance

System.currentTimeMillis()

– Returns an integer representing the number of milliseconds that
have passed since 12:00am, January 1, 1970.
• The result is returned as a value of type long, which is like int but

with a larger numeric range (64 bits vs. 32).

– Can be called twice to see how many milliseconds have elapsed
between two points in a program.

• How much time does it take to store Moby Dick into a List?

4

Sets (11.2)
• set: A collection of unique values (no duplicates allowed)

that can perform the following operations efficiently:
– add, remove, search (contains)

– We don't think of a set as having indexes; we just
add things to the set in general and don't worry about order

set.contains("to") true

set

"the" "of"

"from"
"to"

"she"
"you"

"him""why"

"in"

"down"
"by"

"if"

set.contains("be") false

5

Set implementation
• in Java, sets are represented by Set interface in java.util

•Set is implemented by HashSet and TreeSet classes

– HashSet: implemented using a "hash table" array;
very fast: O(1) for all operations
elements are stored in unpredictable order

– TreeSet: implemented using a "binary search tree";
pretty fast: O(log N) for all operations
elements are stored in sorted order

– LinkedHashSet: O(1) but stores in order of insertion

6

Set methods
List<String> list = new ArrayList<String>();
...
Set<Integer> set = new TreeSet<Integer>(); // empty
Set<String> set2 = new HashSet<String>(list);

– can construct an empty set, or one based on a given collection

removes all elements of the setclear()

returns true if the set's size is 0isEmpty()

returns true if the given value is found in this setcontains(value)

returns a string such as "[3, 42, -7, 15]"toString()

returns the number of elements in listsize()

removes the given value from the setremove(value)

adds the given value to the setadd(value)

7

Set operations

returns an array of the elements in this settoArray()

removes elements not found in given collection from this setretainAll(coll)
removes all elements in the given collection from this setremoveAll(coll)
returns an object used to examine set's contents (seen later)iterator()

returns true if given other set contains the same elementsequals(set)

returns true if this set contains every element from given setcontainsAll(coll)
adds all elements from the given collection to this setaddAll(collection)

addAll retainAll removeAll

8

Sets and ordering
•HashSet : elements are stored in an unpredictable order

Set<String> names = new HashSet<String>();
names.add("Jake");
names.add("Robert");
names.add("Marisa");
names.add("Kasey");
System.out.println(names);
// [Kasey, Robert, Jake, Marisa]

•TreeSet : elements are stored in their "natural" sorted order
Set<String> names = new TreeSet<String>();
...
// [Jake, Kasey, Marisa, Robert]

•LinkedHashSet : elements stored in order of insertion
Set<String> names = new LinkedHashSet<String>();
...
// [Jake, Robert, Marisa, Kasey]

9

The "for each" loop (7.1)
for (type name : collection) {

statements;
}

• Provides a clean syntax for looping over the elements of a Set,
List, array, or other collection

Set<Double> grades = new HashSet<Double>();
...

for (double grade : grades) {
System.out.println("Student's grade: " + grade);

}

– needed because sets have no indexes; can't get element i

10

Maps vs. sets
• A set is like a map from elements to boolean values.

– Set: Is "Marty" found in the set? (true/false)

– Map: What is "Marty" 's phone number?

Set
"Marty" true

false

Map
"Marty" "206-685-2181"

11

keySet and values
•keySet method returns a Set of all keys in the map

– can loop over the keys in a foreach loop
– can get each key's associated value by calling get on the map

Map<String, Integer> ages = new TreeMap<String, Integer>();
ages.put("Marty", 19);
ages.put("Geneva", 2); // ages.keySet() returns Set<String>
ages.put("Vicki", 57);
for (String name : ages.keySet()) { // Geneva -> 2

int age = ages.get(age); // Marty -> 19
System.out.println(name + " -> " + age); // Vicki -> 57

}

•values method returns a collection of all values in the map
– can loop over the values in a foreach loop
– no easy way to get from a value to its associated key(s)

12

Problem: opposite mapping
• It is legal to have a map of sets, a list of lists, etc.

• Suppose we want to keep track of each TA's GPA by name.
Map<String, Double> taGpa = new HashMap<String, Double>();
taGpa.put("Jared", 3.6);
taGpa.put("Alyssa", 4.0);
taGpa.put("Steve", 2.9);
taGpa.put("Stef", 3.6);
taGpa.put("Rob", 2.9);
...
System.out.println("Jared's GPA is " +

taGpa.get("Jared")); // 3.6

• This doesn't let us easily ask which TAs got a given GPA.
– How would we structure a map for that?

13

Reversing a map
• We can reverse the mapping to be from GPAs to names.

Map<Double, String> taGpa = new HashMap<Double, String>();
taGpa.put(3.6, "Jared");
taGpa.put(4.0, "Alyssa");
taGpa.put(2.9, "Steve");
taGpa.put(3.6, "Stef");
taGpa.put(2.9, "Rob");
...
System.out.println("Who got a 3.6? " +

taGpa.get(3.6)); // ???

• What's wrong with this solution?
– More than one TA can have the same GPA.
– The map will store only the last mapping we add.

14

Proper map reversal
• Really each GPA maps to a collection of people.

Map<Double, Set<String>> taGpa =
new HashMap<Double, Set<String>>();

taGpa.put(3.6, new TreeSet<String>());
taGpa.get(3.6).add("Jared");
taGpa.put(4.0, new TreeSet<String>());
taGpa.get(4.0).add("Alyssa");
taGpa.put(2.9, new TreeSet<String>());
taGpa.get(2.9).add("Steve");
taGpa.get(3.6).add("Stef");
taGpa.get(2.9).add("Rob");
...
System.out.println("Who got a 3.6? " +

taGpa.get(3.6)); // [Jared, Stef]

– must be careful to initialize the set for a given GPA before adding

15

Exercises
• Modify the word count program to print every word that

appeared in the book at least 1000 times, in sorted order from
least to most occurrences.

• Write a program that reads a list of TA names and quarters'
experience, then prints the quarters in increasing order of how
many TAs have that much experience, along with their names.

Allison 5 1 qtr: [Brian]
Alyssa 8 2 qtr: ...
Brian 1 5 qtr: [Allison, Kasey]
Kasey 5
...

Iterators

reading: 11.1; 15.3; 16.5

17

Examining sets and maps
• elements of Java Sets and Maps can't be accessed by index

– must use a "foreach" loop:

Set<Integer> scores = new HashSet<Integer>();
for (int score : scores) {

System.out.println("The score is " + score);
}

– Problem: foreach is read-only; cannot modify set while looping

for (int score : scores) {
if (score < 60) {
// throws a ConcurrentModificationException

scores.remove(score);
}

}

18

Iterators (11.1)
• iterator: An object that allows a client to traverse the

elements of any collection.
– Remembers a position, and lets you:

• get the element at that position
• advance to the next position
• remove the element at that position

6size
12

5
0

6
5

4
0

7
0

8
9

2
7

3
083value
910index

list

current element: 9
current index: 2iterator

set
"the"

"to"

"from"

"we"

current element: "from"
next element: "the"iterator

19

Iterator methods

•Iterator interface in java.util
– every collection has an iterator() method that returns an

iterator over its elements

Set<String> set = new HashSet<String>();
...
Iterator<String> itr = set.iterator();
...

returns the next element from the collection (throws a
NoSuchElementException if there are none left to examine)

next()

removes the last value returned by next() (throws an
IllegalStateException if you haven't called next() yet)

remove()

returns true if there are more elements to examinehasNext()

20

Iterator example
Set<Integer> scores = new TreeSet<Integer>();
scores.add(94);
scores.add(38); // Kim
scores.add(87);
scores.add(43); // Marty
scores.add(72);
...

Iterator<Integer> itr = scores.iterator();
while (itr.hasNext()) {

int score = itr.next();

System.out.println("The score is " + score);

// eliminate any failing grades
if (score < 60) {

itr.remove();
}

}
System.out.println(scores); // [72, 87, 94]

21

Iterator example 2
Map<String, Integer> scores = new TreeMap<String, Integer>();
scores.put("Kim", 38);
scores.put("Lisa", 94);
scores.put("Roy", 87);
scores.put("Marty", 43);
scores.put("Marisa", 72);
...

Iterator<String> itr = scores.keySet().iterator();
while (itr.hasNext()) {

String name = itr.next();
int score = scores.get(name);
System.out.println(name + " got " + score);

// eliminate any failing students
if (score < 60) {

itr.remove(); // removes name and score
}

}
System.out.println(scores); // {Lisa=94, Marisa=72, Roy=87}

22

Exercise
• Modify the Book Search program from last lecture to eliminate

any words that are plural or all-uppercase from the collection.

• Modify the TA quarters experience program so that it
eliminates any TAs with 3 quarters or fewer of experience.

