
CSE 143
Lecture 14 (B)

Maps and Grammars

reading: 11.3

slides created by Marty Stepp
http://www.cs.washington.edu/143/

2

Exercise
• Write a program to count the occurrences of each word in a

large text file (e.g. Moby Dick or the King James Bible).

– Allow the user to type a word and report how many times that
word appeared in the book.

– Report all words that appeared in the book at least 500 times, in
alphabetical order.

• How will we store the data to solve this problem?

3

The Map ADT
• map: Holds a set of unique keys and a collection of values,

where each key is associated with one value.
– a.k.a. "dictionary", "associative array", "hash"

• basic map operations:
– put(key, value): Adds a

mapping from a key to
a value.

– get(key): Retrieves the
value mapped to the key.

– remove(key): Removes
the given key and its
mapped value.

myMap.get("Juliet") returns "Capulet"

4

Maps and tallying
• a map can be thought of as generalization of a tallying array

– the "index" (key) doesn't have to be an int

• recall previous tallying examples from CSE 142
– count digits: 22092310907

// (M)cCain, (O)bama, (I)ndependent
– count votes: "MOOOOOOMMMMMOOOOOOMOMMIMOMMIMOMMIO"

index 0 1 2 3 4 5 6 7 8 9

value 3 1 3 0 0 0 0 1 0 2

key "M" "O" "I"

value 16 14 3

"M"

"O"

"I" 16

3

14

keys values

5

Map implementation
• in Java, maps are represented by Map interface in java.util

•Map is implemented by the HashMap and TreeMap classes

– HashMap: implemented using an array called a "hash table";
extremely fast: O(1) ; keys are stored in unpredictable order

– TreeMap: implemented as a linked "binary tree" structure;
very fast: O(log N) ; keys are stored in sorted order

– A map requires 2 type parameters: one for keys, one for values.

// maps from String keys to Integer values
Map<String, Integer> votes = new HashMap<String, Integer>();

6

Map methods

returns the value mapped to the given key (null if not found)get(key)

removes all key/value pairs from the mapclear()

returns true if the map's size is 0isEmpty()

returns true if the map contains a mapping for the given keycontainsKey(key)

returns a string such as "{a=90, d=60, c=70}"toString()

returns the number of key/value pairs in the mapsize()

removes any existing mapping for the given keyremove(key)

adds a mapping from the given key to the given value;
if the key already exists, replaces its value with the given one

put(key, value)

returns true if given map has the same mappings as this oneequals(map)

adds all key/value pairs from the given map to this mapputAll(map)
returns a collection of all values in the mapvalues()

returns a set of all keys in the mapkeySet()

7

Using maps
• A map allows you to get from one half of a pair to the other.

– Remembers one piece of information about every index (key).

– Later, we can supply only the key and get back the related value:
Allows us to ask: What is Marty's phone number?

Map
get("Marty")

"206-685-2181"

Map

// key value
put("Marty", "206-685-2181")

8

Exercise solution
// read file into a map of [word --> number of occurrences]
Map<String, Integer> wordCount = new HashMap<String, Integer>();
Scanner input = new Scanner(new File("mobydick.txt"));
while (input.hasNext()) {

String word = input.next();
if (wordCount.containsKey(word)) {

// seen this word before; increase count by 1
int count = wordCount.get(word);
wordCount.put(word, count + 1);

} else {
// never seen this word before
wordCount.put(word, 1);

}
}

Scanner console = new Scanner(System.in);
System.out.print("Word to search for? ");
String word = console.next();
System.out.println("appears " + wordCount.get(word) + " times.");

9

keySet and values
•keySet method returns a set of all keys in the map

– can loop over the keys in a foreach loop
– can get each key's associated value by calling get on the map

Map<String, Integer> ages = new HashMap<String, Integer>();
ages.put("Marty", 19);
ages.put("Geneva", 2);
ages.put("Vicki", 57);
for (String name : ages.keySet()) { // Geneva -> 2

int age = ages.get(age); // Marty -> 19
System.out.println(name + " -> " + age); // Vicki -> 57

}

•values method returns a collection of all values in the map
– can loop over the values in a foreach loop
– there is no easy way to get from a value to its associated key(s)

Languages and Grammars

11

Languages and grammars
• (formal) language: A set of words or symbols.

• grammar: A description of a language that describes which
sequences of symbols are allowed in that language.
– describes language syntax (rules) but not semantics (meaning)
– can be used to generate strings from a language, or to determine

whether a given string belongs to a given language

12

Backus-Naur (BNF)
• Backus-Naur Form (BNF): A syntax for describing language

grammars in terms of transformation rules, of the form:

<symbol> ::= <expression> | <expression> ... | <expression>

– terminal: A fundamental symbol of the language.
– non-terminal: A high-level symbol describing language syntax,

which can be transformed into other non-terminal or terminal
symbol(s) based on the rules of the grammar.

– developed by two Turing-award-winning computer scientists in 1960 to
describe their new ALGOL programming language

13

An example BNF grammar
<s>::=<n> <v>
<n>::=Marty | Victoria | Stuart | Jessica
<v>::=cried | slept | belched

• Some sentences that could be generated from this grammar:

Marty slept
Jessica belched
Stuart cried

14

BNF grammar version 2
<s>::=<np> <v>
<np>::=<pn> | <dp> <n>
<pn>::=Marty | Victoria | Stuart | Jessica
<dp>::=a | the
<n>::=ball | hamster | carrot | computer
<v>::=cried | slept | belched

• Some sentences that could be generated from this grammar:

the carrot cried
Jessica belched
a computer slept

15

BNF grammar version 3
<s>::=<np> <v>
<np>::=<pn> | <dp> <adj> <n>
<pn>::=Marty | Victoria | Stuart | Jessica
<dp>::=a | the
<adj>::=silly | invisible | loud | romantic
<n>::=ball | hamster | carrot | computer
<v>::=cried | slept | belched

• Some sentences that could be generated from this grammar:

the invisible carrot cried
Jessica belched
a computer slept
a romantic ball belched

16

Grammars and recursion
<s>::=<np> <v>
<np>::=<pn> | <dp> <adjp> <n>
<pn>::=Marty | Victoria | Stuart | Jessica
<dp>::=a | the
<adjp>::=<adj> <adjp> | <adj>
<adj>::=silly | invisible | loud | romantic
<n>::=ball | hamster | carrot | computer
<v>::=cried | slept | belched

• Grammar rules can be defined recursively, so that the
expansion of a symbol can contain that same symbol.
– There must also be expressions that expand the symbol into

something non-recursive, so that the recursion eventually ends.

17

Grammar, final version
<s>::=<np> <vp>
<np>::=<dp> <adjp> <n>|<pn>
<dp>::=the|a
<adjp>::=<adj>|<adj> <adjp>
<adj>::=big|fat|green|wonderful|faulty|subliminal
<n>::=dog|cat|man|university|father|mother|child
<pn>::=John|Jane|Sally|Spot|Fred|Elmo
<vp>::=<tv> <np>|<iv>
<tv>::=hit|honored|kissed|helped
<iv>::=died|collapsed|laughed|wept

• Could this grammar generate the following sentences?
Fred honored the green wonderful child

big Jane wept the fat man fat

• Generate a random sentence using this grammar.

18

Sentence generation
<s>

<np> <vp>

<pn>

Fred

<tv> <np>

honored

<dp> <adjp> <n>

the

<adjp><adj>

childgreen

<adj>

wonderful

