
CSE 143
Lecture 5

More ArrayIntList;
Pre/postconditions; exceptions; testing

slides created by Marty Stepp
http://www.cs.washington.edu/143/

2

Convenience methods
• Implement the following methods:

– indexOf - returns the first index an element is found, or -1 if not
– isEmpty - returns true if list has no elements
– contains - returns true if the list contains the given int value

• Why do we need isEmpty and contains when we already
have indexOf and size ?
– These methods provide convenience to the client of our class.

if (myList.size() == 0) { if (myList.isEmpty()) {

if (myList.indexOf(42) >= 0) { if (myList.contains(42)) {

3

More ArrayIntList
• Let's add some new features to our ArrayIntList class:

1. A method that allows client programs to print a list's elements
2. A constructor that accepts an initial capacity

(By writing these we will recall some features of objects in Java.)

• Printing lists: You may be tempted to write a print method:
// client code
ArrayIntList list = new ArrayIntList();
...
list.print();

– Why is this a bad idea? What would be better?

4

The toString method

• Tells Java how to convert an object into a String
ArrayIntList list = new ArrayIntList();
System.out.println("list is " + list);

// ("list is " + list.toString());

• Syntax:
public String toString() {

code that returns a suitable String;
}

• Every class has a toString, even if it isn't in your code.
– The default is the class's name and a hex (base-16) number:
ArrayIntList@9e8c34

5

toString solution
// Returns a String representation of the list.
public String toString() {

if (size == 0) {
return "[]";

} else {
String result = "[" + elementData[0];
for (int i = 1; i < size; i++) {

result += ", " + elementData[i];
}
result += "]";
return result;

}
}

6

Multiple constructors
• existing constructor:

public ArrayIntList() {
elementData = new int[10];
size = 0;

}

• Add a new constructor that accepts a capacity parameter:
public ArrayIntList(int capacity) {

elementData = new int[capacity];
size = 0;

}

– The constructors are very similar. Can we avoid redundancy?

7

this keyword
•this : A reference to the implicit parameter

(the object on which a method/constructor is called)

• Syntax:

– To refer to a field: this.field

– To call a method: this.method(parameters);

– To call a constructor this(parameters);
from another constructor:

8

Revised constructors

public ArrayIntList(int capacity) {
elementData = new int[capacity];
size = 0;

}

public ArrayIntList() {
this(10); // calls (int) constructor

}

9

Size vs. capacity
• What happens if the client tries to access an element that is

past the size but within the capacity (bounds) of the array?
– Example: list.get(7); on a list of size 5 (capacity 10)

– Answer: Currently the list allows this and returns 0.
• Is this good or bad? What (if anything) should we do about it?

5size
0

5
0

6
5

4
0

7
0

8
9

2
7

3
083value
910index

10

Preconditions
• precondition: Something your method assumes is true

at the start of its execution.
– Often documented as a comment on the method's header:

// Returns the element at the given index.
// Precondition: 0 <= index < size
public void remove(int index) {

return elementData[index];
}

– Stating a precondition doesn't really "solve" the problem, but it at
least documents our decision and warns the client what not to do.

– What if we want to actually enforce the precondition?

11

Bad precondition test
• What is wrong with the following way to handle violations?

// Returns the element at the given index.
// Precondition: 0 <= index < size
public void remove(int index) {

if (index < 0 || index >= size) {
System.out.println("Bad index! " + index);
return -1;

}
return elementData[index];

}

– returning -1 is no better than returning 0 (could be a legal value)
– println is not a very strong deterrent to the client (esp. GUI)

12

Throwing exceptions (4.5)
throw new ExceptionType();
throw new ExceptionType("message");

• Causes the program to immediately crash with an exception.

• Common exception types:
– ArithmeticException, ArrayIndexOutOfBoundsException, FileNotFoundException,

IllegalArgumentException, IllegalStateException, IOException, NoSuchElementException,
NullPointerException, RuntimeException, UnsupportedOperationException

• Why would anyone ever want the program to crash?

13

Exception example
public void get(int index) {

if (index < 0 || index >= size) {
throw new ArrayIndexOutOfBoundsException(index);

}
return elementData[index];

}

– Exercise: Modify the rest of ArrayIntList to state
preconditions and throw exceptions as appropriate.

14

Postconditions
• postcondition: Something your method promises will be true

at the end of its execution.
– Often documented as a comment on the method's header:

// Makes sure that this list's internal array is large
// enough to store the given number of elements.
// Postcondition: elementData.length >= capacity
public void ensureCapacity(int capacity) {

// double in size until large enough
while (capacity > elementData.length) {

elementData = Arrays.copyOf(elementData,
2 * elementData.length));

}
}

– If your method states a postcondition, clients should be able to
rely on that statement being true after they call the method.

15

Writing testing programs
• Some programs are written specifically to test other programs.

• If we wrote ArrayIntList and want to give it to others, we
must make sure it works adequately well first.

• Write a client program with a main method that constructs
several lists, adds elements to them, and calls the various
other methods.

16

Tips for testing
• You cannot test every possible input, parameter value, etc.

– Even a single (int) method has 2^32 different possible values!
– So you must think of a limited set of tests likely to expose bugs.

• Think about boundary cases
– positive, zero, negative numbers
– right at the edge of an array or collection's size

• Think about empty cases and error cases
– 0, -1, null; an empty list or array
– an array or collection that contains null elements

• Write helping methods in your test program to shorten it.

17

More testing tips
• Focus on expected vs. actual behavior

• the test shouldn't just call methods and print results; it should:
– call the method(s)
– compare their results to a known correct expected value
– if they are the same, report that the test "passed"
– if they differ, report that the test "failed" along with the values

• test behavior in combination
– maybe add usually works, but fails after you call remove
– what happens if I call add then size? remove then toString?
– make multiple calls; maybe size fails the second time only

18

Example ArrayIntList test
public static void main(String[] args) {

int[] a1 = {5, 2, 7, 8, 4};
int[] a2 = {2, 7, 42, 8};
int[] a3 = {7, 42, 42};
helper(a1, a2);
helper(a2, a3);
helper(new int[] {1, 2, 3, 4, 5}, new int[] {2, 3, 42, 4});

}

public static void helper(int[] elements, int[] expected) {
ArrayIntList list = new ArrayIntList(elements);
for (int i = 0; i < elements.length; i++) {

list.add(elements[i];
}
list.remove(0);
list.remove(list.size() - 1);
list.add(2, 42);
for (int i = 0; i < expected.length; i++) {

if (list.get(i) != expected[i]) {
System.out.println("fail; expect " + Arrays.toString(expected)

+ ", actual " + list);
}

}
}

