
1 of 3

CSE 143, Winter 2010
Programming Assignment #1: Rectangle-Rama (20 points)

Due Thursday, January 14, 2010, 11:30 PM
thanks to Mike Clancy of UC Berkeley for the original idea of this nifty assignment!

This program focuses on using the ArrayList collection class and basic object-oriented programming. Turn in a file
named RectangleManager.java online using the turnin link on the Homework section of the course web site. You will
also need the support files DrawingPanel.java, Rectangle.java, and RectangleMain.java from the Homework
section of the course web site; place these in the same folder as your program or project. (If you use Eclipse, you may
need to put these files in the src/ subdirectory of your project if such a subdirectory exists.)
You should not modify the provided files. The code you submit must work properly with their unmodified versions.

Program Description:
In this assignment you will write the logic for a graphical program that allows the user to click on rectangles. The
graphical part of the code has already been written for you; your code does not need to directly draw any graphics.
The main client program you should run is the provided RectangleMain class. When
it runs, it will create a graphical window on the screen; this is an object of type
DrawingPanel. The panel will display a list of rectangles. Each rectangle is
represented as an object of the provided class Rectangle. Each rectangle's position,
size, and color are randomly generated by RectangleMain. The overall list of
rectangles should be stored and maintained by your code in the RectangleManager
class you will write.
In the screenshot to the right, notice that some rectangles overlap and occupy some of
the same (x, y) pixels in the window. In such a case, the rectangle created later is "on
top" of prior rectangles and may partially cover them on the screen. You should think
of the overall list of rectangles as having an ordering, where rectangles stored earlier in
the list are closer to the "bottom" and ones stored later in the list are closer to the "top".
This is sometimes called a 3-dimensional ordering or z-ordering.
The graphical user interface ("GUI") displays the rectangles and allows the user to click on them. Depending on the kind
of click, one of four different actions occurs:

• If the user clicks the left mouse button while the mouse cursor points at a rectangle, that
rectangle is moved to the very top of the z-ordering (the end of the list of rectangles).

• If the user clicks the left mouse button while holding down the Shift key, while the mouse
cursor is pointing at a rectangle, that rectangle is moved to the very bottom of the z-ordering
(moved to the start of the list of rectangles).

• If the user clicks the right mouse button while the mouse cursor is pointing at a rectangle, that
rectangle is removed from the list of rectangles and disappears from the screen.

• If the user clicks the right mouse button while holding down the Shift key, all rectangles
that occupy that pixel are removed from the list of rectangles and disappear from the screen.

If you use a Mac with a 1-button mouse, you can simulate a right-click with a Ctrl-click (or a two-finger tap on the touch
pad on a Mac laptop). If the user clicks the window at a pixel not occupied by any rectangles, nothing happens.
If the user clicks a pixel that is occupied by more than one rectangle, the top-most of these rectangles is used. (Except if
the user did a Shift-right-click, in which case it deletes all rectangles touching that pixel, not just the top one.)
Note that your code does not need to directly detect mouse clicks. Our provided code detects the mouse clicks and
responds to them by calling various methods on your RectangleManager object, as described on the next page.

2 of 3

Implementation Details:
Your RectangleManager class should store a list of rectangles as a field of type ArrayList. The various methods
listed below will cause changes to the contents of that list. Remember to import java.util.*; to use ArrayList.
The following sections describe in detail each method you must implement in your RectangleManager class. For any
methods that accept objects as parameters, you may assume that the value passed is not null or otherwise invalid.
public RectangleManager()
This constructor should initialize a new rectangle manager object. Initially the manager is not storing any rectangles.

public void addRectangle(Rectangle rect)
This method should add the given rectangle to the end of the rectangle manager's list of rectangles.

public void drawAll(Graphics g)
This method should cause all of the rectangles in the rectangle manager to draw themselves on the screen using the given
graphical pen. You do not need to do this yourself directly by calling methods on the Graphics object; each Rectangle
method already has a draw method that it can use to draw itself. You just need to pass on the Graphics object to each
rectangle to do the rest of the work. Draw the rectangles in order from bottom (start) to top (end) of your manager's list.
Recall that in order to refer to type Graphics, you must import java.awt.*; in your code.

public void raise(int x, int y)
The graphical user interface ("GUI") calls this method on your rectangle manager when the user left-clicks. It passes you
the x/y coordinates the user clicked. If these coordinates touch any rectangles, you should move the topmost of these
rectangles to the very top (end) of the list. If the coordinates do not touch any rectangles, no action or error should occur.

public void lower(int x, int y)
The GUI calls this method on your rectangle manager when the user Shift-left-clicks. If these coordinates touch any
rectangles, your method should move the topmost of these rectangles to the very bottom (beginning) of the list. If the
coordinates do not touch any rectangles, no action or error should occur.

public void delete(int x, int y)
The GUI calls this method on your rectangle manager when the user right-clicks. If these coordinates touch any
rectangles, your method should delete the topmost of these rectangles from the list. If the coordinates do not touch any
rectangles, no action or error should occur.

public void deleteAll(int x, int y)
The GUI calls this method on your rectangle manager when the user Shift-right-clicks. If these coordinates touch any
rectangles, your method should delete all of these rectangles from the list. If the coordinates do not touch any rectangles,
no action or error should occur.

After any mouse click, the GUI also clears the screen and calls drawAll to re-draw all of the rectangles in your list.

Your manager's list stores Rectangle objects. Each Rectangle object has the following public methods:
public int getX(), public int getY(), public int getWidth(), public int getHeight()
These methods return the rectangle's top-left x/y position, width, and height in pixels respectively.

public Color getColor()
These methods return the rectangle's color. You should not need to call this method.

public void draw(Graphics g)
Draws the rectangle on the screen using the given graphical pen.

public String toString()

Returns a text representation of the rectangle, such as "(x=57,y=148,w=26,h=53)".
It can be useful to print a rectangle (or a collection of rectangles) with println to examine their state.

3 of 3

Development Strategy and Hints:
We have noticed that many CSE 143 students do not develop their code in stages and do not have a good idea of how to
test their solutions. One of the most important techniques for professional developers is to write code in stages ("iterative
enhancement" or "stepwise refinement") rather than trying to do it all at once. It is also important to test the correctness
of your solution at each stage. We suggest that you write your constructor and addRectangle first, then drawAll.
Then run the program to make sure that you can see the rectangles appear on the screen. Now write each click-related
method one at a time and test each one individually to be sure it works before moving on to the next.
The program will not compile until your RectangleManager class contains all of the specified methods. But you can
just write empty "stub" versions of the methods at first, then come back later and fill them in when you are ready. This
will allow you to write each method and test it one at a time.
One part of this program involves figuring out which rectangle(s), if any, touch a given x/y pixel. You can figure this out
by comparing the x/y position of the click to the x/y area covered by the rectangle. For example, if a rectangle has a top-
left corner of (x=20, y=10), a width of 50, and a height of 15, it touches all of the pixels from (20, 10) through (69, 24)
inclusive. Such a rectangle contains the point (32, 17) because 32 is between 20 and 69 and 17 is between 10 and 24.
If you're seeing compiler errors related to the Rectangle class, you may not have downloaded Rectangle.java or
added it to your project properly. Java includes its own Rectangle class that is incompatible with our provided one.
If you have bugs or exceptions in your code, there are several things you can try. You can print out the state of your list
and of each Rectangle object with temporary println statements. (Though this is a graphical program, println
output does still appear on the console.) You should remove or comment out any such println statements later before
you turn in the assignment. You can also use a debugger as found in jGRASP or Eclipse to pause the code at a
breakpoint in the middle of an operation. Stepping through line-by-line can help you to see what has gone wrong.
A sample solution to this program is available on the course web site. You can use this to test your program's behavior.

Style Guidelines and Grading:
A major focus of our style grading is redundancy. As much as possible you should avoid redundancy and repeated logic
within your code. One powerful way to avoid redundancy is to create "helper" method(s) to capture repeated code. It is
legal to have additional methods in your RectangleManager class beyond those specified here. (We recommend that
you declare any such methods to be private rather than public, so that code outside your class cannot call them.)
Your rectangle manager should maintain its list of rectangles internally in a field of type ArrayList as stated previously.
You should not use any other data structures. Your code should use "generic" type parameters appropriately when
creating any collection objects. You must declare such collections with a suitable element type within <> brackets. You
should use the array list appropriately and take advantage of its ability to "shift" elements as they are added or removed.
Your list should not store any invalid or null elements as a result of any mouse click activity.
Properly encapsulate your objects by making any data fields in your class private. Avoid unnecessary fields; use fields
to store important data of your objects but not to store temporary values only used in one place. Fields should always be
initialized inside a constructor or method, never at declaration.
You should follow good general Java style guidelines such as: appropriately using control structures like loops and
if/else statements; avoiding redundancy using techniques such as methods, loops, and factoring common code out of
if/else statements; properly using indentation, good variable names, and types; and not having any lines of code longer
than 100 characters in length. (If you have any such lines, split them into two or more lines using a line break.)
You should comment your code with a heading at the top of your class with your name, section, and a description of the
overall program. Also place a comment heading on top of each method, and a comment on any complex sections of your
code. Comment headings should use descriptive complete sentences and should be written in your own words, explaining
each method's behavior, parameters, return values, and assumptions made by your code, as appropriate.
Unless otherwise specified, your solution should use only material taught in class and in the book chapters covered so far.
For reference, our solution to this program is around 80 lines long including comments (and has 36 "substantive" lines
according to our Indenter tool on the course web site). But you do not have to match this; it's just listed as a sanity check.

