Approximate Lecture Calendar

Week 1
- **M 1/4**: syllabus; review; arrays
- **W 1/6**: Java Tutorial: Java basics
- **F 1/8**: Wikipedia: array
- **ArrayList**: read 10.1
- **Wikipedia**: data structures, collection

Week 2
- **M 1/11**: implementing ArrayList
- **W 1/13**: read Ch. 1-8
- **F 1/15**: Wikipedia: data structures, collection
- **ArrayList**: read 10.1
- **Wikipedia**: OOP, object, class, encapsulation
- **HW1 assigned**

Week 3
- **M 1/18**: NO CLASS
- **W 1/20**: stacks and queues
- **F 1/22**: more stacks/queues; complexity
- **stacks and queues**: read Stuart's notes 1, notes 2
- **Java Tutorial**: Queue
- **Wikipedia**: stack, queue
- **Publication**: more

Week 4
- **M 1/25**: linked list nodes
- **W 1/27**: linked lists
- **F 1/29**: linked lists
- **linked list nodes**: read 16.1
- **linked lists**: read 16.2
- **HW4 assigned**

Week 5
- **M 2/1**: recursion
- **W 2/3**: recursive programming
- **F 2/5**: recursive programming; maps; grammars
- **recursion**: read 12.1
- **recursive programming**: read 12.2 - 12.3
- **HW5 assigned**

Week 6
- **M 2/8**: more sets and maps; Iterator
- **W 2/10**: searching/sorting; Comparable
- **F 2/12**: recursive backtracking
- **more sets and maps; Iterator**: read 11.2 - 11.3; 10.1
- **searching/sorting**: read 13.1 - 13.4; 10.2
- **recursive backtracking**: read Stuart's notes
- **Java Tutorial**: search, sort, selection, merge
- **Wikipedia**: b.search, sort, selection, merge
- **Youtube**: Obama on sorting

Week 7
- **M 2/15**: NO CLASS
- **W 2/17**: MIDTERM EXAM, in class
- **F 2/19**: recursive backtracking
- **NO CLASS**: holiday (Presidents Day)
- **MIDTERM EXAM, in class**: read Stuart's notes
- **HW6 assigned**

Week 8
- **M 2/22**: binary trees
- **W 2/24**: binary search trees
- **F 2/26**: binary search trees
- **binary trees**: read 17.1 - 17.2
- **binary search trees**: read 17.3
- **binary search trees**: read 17.3
- **stanford videos**: lecture 22 (28:18 - end)
- **stanford videos**: lecture 22 (2:00 - 18:00)
- **stanford videos**: lecture 22 (2:00 - 18:00)

Week 9
- **M 3/1**: I/O streams; exceptions; inheritance
- **W 3/3**: inheritance and polymorphism
- **F 3/5**: priority queues; Huffman trees
- **I/O streams; exceptions; inheritance**: read 9.3, 6.4
- **inheritance and polymorphism**: read 9.2; Stuart's notes
- **priority queues; Huffman trees**: read Stuart's notes
- **Java API**: Inputstream, OutputStream, URL, Exception
- **Java API**: Object
- **Java API**: PriorityQueue
- **Wikipedia**: PriorityQueue
- **Wikipedia**: priority queue
- **Wikipedia**: hash table
- **Wikipedia**: hash table
- **Stanford videos**: lecture 24
- **Stanford videos**: lecture 24

Week 10
- **M 3/8**: advanced list implementation; abstract/inner classes; generics
- **W 3/10**: advanced set implementation; hashing
- **F 3/12**: computer science; discuss final exam; course evaluations
- **advanced list implementation; abstract/inner classes; generics**: read 11.1; 9.6; 15.3-15.4; 16.4-16.5
- **advanced set implementation; hashing**: read 10.1 - 10.3; Ch. 8
- **computer science; discuss final exam; course evaluations**: read 10.1 - 10.3; Ch. 8

This calendar should accurately describe what has occurred in past lectures, but it won't always accurately predict the future.