
1

CSE 143
Lecture 22

Huffman

slides created by Ethan Apter
http://www.cs.washington.edu/143/

2

Huffman Tree
•  For your next assignment, you’ll create a “Huffman tree”

• Huffman trees are used for file compression
–  file compression: making files smaller

• for example, WinZip makes zip files

• Huffman trees allow us to implement a relatively simple
form of file compression
–  Huffman trees are essentially just binary trees
–  it’s not as good as WinZip, but it’s a whole lot easier!

• Specifically, we’re going to compress text files

2

3

ASCII
• Characters in a text file are all encoded by bits

–  bit: the smallest piece of information on a computer
(“zero” or “one”)

–  your computer automatically converts the bits into the
characters you expect to see

• Normally, all characters are encoded by the same number
of bits
–  this makes it easy to find the boundaries between characters

• One character encoding is the American Standard Code for
Information Interchange
–  better known as ASCII

4

ASCII Table

3

5

ASCII
• The original version of ASCII had 128 characters

–  this fit perfectly into 7 bits (27 = 128)

• But the standard data size is 8 bits (i.e. a byte)
–  original ASCII used the 8th bit as a “parity” (odd or even) bit
–  ...which didn’t work out very well

• Eventually, 128 characters wasn’t enough
–  Extended ASCII has 256 characters

• this fits perfectly into 8 bits (28 = 256)
• can represent 00000000 to 11111111 (binary)
• can represent 0 to 255 (decimal)

6

Extended ASCII Table

4

7

Text Files
•  In simple text files, each byte (8 bits) represents a single

character

•  If we want to compress the file, we have to do better
–  otherwise, we won’t improve the old file

• What if different characters are represented by different
numbers of bits?
–  characters that appear frequently will require fewer bits
–  characters that appear infrequently will require more bits

• The Huffman algorithm finds an ideal variable-length way
of encoding the characters for a specific file

8

Huffman Algorithm
• The Huffman algorithm creates a Huffman tree

• This tree represents the variable-length character encoding

•  In a Huffman tree, the left and right children each represent a
single bit of information
–  going left is a bit of value zero
–  going right is a bit of value one

• But how do we create the Huffman tree?

5

9

Creating a Huffman Tree
•  First, we have to know how frequently each character

occurs in the file

• Then, we construct a leaf node for every character that
occurs at least once (i.e. has non-zero frequency)
–  we don’t care about letters that never occur, because we won’t

have to encode them in this particular file

• We now have a list of nodes, each of which contains a
character and a frequency

10

Creating a Huffman Tree
• So we’ve got a list of nodes

–  we can also think of these nodes as subtrees

• Until we’re left with a single tree

–  pick the two subtrees with the smallest frequencies

–  combine these nodes into a new subtree
• this subtree has a frequency equal to the sum of the two frequencies

of its children

• Now we’ve got our Huffman Tree

6

11

Creating a Huffman Tree
• Visual example of the last few slides:

–  Suppose the file has 3 ‘a’s, 3 ‘b’s, 1 ‘c’, 1 ‘x’, and 2 ‘y’s
–  (subtrees displayed in sorted order, according to frequency)

‘c’
1

‘x’
1

‘y’
2

‘b’
3

‘a’
3

12

Creating a Huffman Tree
• Visual example of the last few slides:

–  Suppose the file has 3 ‘a’s, 3 ‘b’s, 1 ‘c’, 1 ‘x’, and 2 ‘y’s
–  (subtrees displayed in sorted order, according to frequency)

‘y’
2

‘b’
3

‘a’
3

‘c’
1

‘x’
1

?
2

7

13

Creating a Huffman Tree
• Visual example of the last few slides:

–  Suppose the file has 3 ‘a’s, 3 ‘b’s, 1 ‘c’, 1 ‘x’, and 2 ‘y’s
–  (subtrees displayed in sorted order, according to frequency)

‘b’
3

‘a’
3

‘y’
2

‘c’
1

‘x’
1

?
2

?
4

14

Creating a Huffman Tree
• Visual example of the last few slides:

–  Suppose the file has 3 ‘a’s, 3 ‘b’s, 1 ‘c’, 1 ‘x’, and 2 ‘y’s
–  (subtrees displayed in sorted order, according to frequency)

‘y’
2

‘c’
1

‘x’
1

?
2

?
4

‘b’
3

‘a’
3

?
6

8

15

Creating a Huffman Tree
• Visual example of the last few slides:

–  Suppose the file has 3 ‘a’s, 3 ‘b’s, 1 ‘c’, 1 ‘x’, and 2 ‘y’s
–  (subtrees displayed in sorted order, according to frequency)

‘y’
2

‘c’
1

‘x’
1

?
2

?
4

‘b’
3

‘a’
3

?
6

?
10

16

Creating a Huffman Tree
• Recall also that:

–  moving to the left child means 0
–  moving to the right child means 1

‘y’
2

‘c’
1

‘x’
1

?
2

?
4

‘b’
3

‘a’
3

?
6

?
10

0

1

1

0

0

0

1

1

9

17

Creating a Huffman Tree
• These are the character encodings for the previous tree:

–  00 is the character encoding for ‘y’
–  010 is the character encoding for ‘c’
–  011 is the character encoding for ‘x’
–  10 is the character encoding for ‘a’
–  11 is the character encoding for ‘b’

• Notice that characters with higher frequencies have shorter
encodings
–  ‘a’, ‘b’, and ‘y’ all have 2 character encodings
–  ‘c’ and ‘x’ have 3 character encodings

• Once we have our tree, the frequencies don’t matter
–  we just needed the frequencies to compute the encodings

18

Reading and Writing Bits
• So, the character encoding for ‘x’ is 011

• But we don’t want to write the String “011” to a file
 // assume output writes to a file
 output.print(“011”); // bad!

• Why?
–  we just replaced a single character (‘x’) with three characters (‘0’,

‘1’, and ‘1’)
–  so now we’re using 24 bits instead of just 8 bits!

•  Instead, we need a way to read and write a single bit

10

19

Reading and Writing Bits
• To write a single bit, Stuart Reges (author of book) wrote
BitOutputStream
–  The Encode.java program uses BitOutputStream and the

character encodings from your Huffman tree to encode a file

• To read a single bit, Stuart wrote BitInputStream
–  The Decode.java program opens a BitInputStream to

read the individual bits of the encoded file
–  ...but it passes this BitInputStream to you and makes

you do all the work

• The only method you care about is in BitInputStream:
 // reads and returns the next bit in this input stream
 public int readBit()

20

Bit Input/Output Streams

• BitInputStream: like any other stream, but allows you to read one bit at
a time from input until it is exhausted.

• BitOutputStream: same, but allows you to write one bit at a time.

public BitInputStream(String file) Creates stream to read bits from file with given
name

public int readBit() Reads a single 1 or 0; returns -1 at end of file

public void close() Stops reading from the stream

public BitOutputStream(String file) Creates stream to write bits to file with
given name

public void writeBit(int bit) Writes a single bit

public void close() Stops reading from the stream

11

21

Decoding an Encoded File
• To decode a file:

–  Start at the top of the Huffman tree

–  Until you’re at a leaf node

• Read a single bit (0 or 1)

• Move to the appropriate child (0  left, 1  right)

–  Write the character at the leaf node

–  Go back to the top of the tree and repeat until you’ve
decoded the entire file

22

End of File
• But how do we know when the file ends?

• Every file must consist of a whole number of bytes
–  so the number of bits in a file must be a multiple of 8

• This was fine when every character was also exactly one
byte, but it might not work out well with our variable-length
encodings
–  Suppose your encoding of a file is 8001 bits long
–  Then the resulting encoded file will have 8008 bits
–  Clearly, there are 7 bits at the end of the encoded file that

don’t correspond data in the original file
–  But 7 is a lot of bits for Huffman, and it’s likely that we would

decode a few extra characters

12

23

End of File
• To get around this, we’re going to introduce a “fake”

character at the end of our file
–  we’ll call this fake character the “pseudo-eof” character
–  “pseudo-eof”: pseudo end-of-file

• This character does not actually exist in the original file
–  it just lets us know when to stop

• Because the pseudo-eof is fake, it should have a character
value different than the other characters
–  characters have values 0 to X, so our pseudo-eof will have value

(X+1) (i.e. one larger than the largest character value)

24

End of File
• Using the pseudo-eof when creating a Huffman tree:

–  you’ll need to create a leaf node containing the character
value for your pseudo-eof with frequency 1 when you’re
creating the other leaf nodes

–  the rest of the algorithm stays the same

• Using the pseudo-eof when decoding a file:

–  if you ever decode the pseudo-eof (i.e. reach the leaf node
containing the pseudo-eof), you need to stop decoding

–  we don’t want to decode the value of the pseudo-eof because
the pseudo-eof is completely fake

13

25

Using HuffmanTree
• There are three main/client programs for this assigment

• MakeCode.java outputs the character encoding to a file
–  you must complete the first part of the assignment to use

MakeCode.java

• Encode.java takes a text file and a character encoding file. It
uses these files to output an encoded file.

• Decode.java takes an encoded file and a character encoding
file. It uses these files to output a decoded file.
–  you must complete the second part of the assignment to use

Decode.java

26

Using HuffmanTree
• Using the three main/client programs on hamlet.txt

• We give hamlet.txt to MakeCode.java. MakeCode.java
produces the character encoding file (which we’ll call
hamlet.code)

• We give hamlet.txt and hamlet.code to Encode.java.
Encode.java produces the encoded file (which we’ll call
hamlet.short)

• We give hamlet.short and hamlet.code to Decode.java.
Decode.java produces a decoded file (which we’ll call
hamlet.new). hamlet.new is identical to hamlet.txt.

14

27

HuffmanTree: Part II
• Given a bunch of bits, how do we decompress them?

• Hint: HuffmanTrees have an encoding "prefix property."
–  No encoding A is the prefix of another encoding B
–  I.e. never will x → 011 and y → 011100110 be true for any two

characters x and y

• Tree structure tells how many bits represent "next" character

• While there are more bits in the input stream:
–  Read a bit
–  If zero, go left in the tree; if one, go right
–  If at a leaf node, output the character at that leaf and go back to

the tree root

28

HuffmanTree: Part II cont’d.

HuffmanTree for "ab ab cab" Sample encoding

111000…

→ "ab "

