CSE 143
Lecture 22

Huffman

slides created by Ethan Apter
http://www.cs.washington.edu/143/

Huffman Tree

e For your next assignment, you'll create a “Huffman tree”

e Huffman trees are used for file compression
— file compression: making files smaller
o for example, WinZip makes zip files

e Huffman trees allow us to implement a relatively simple
form of file compression

— Huffman trees are essentially just binary trees
— it's not as good as WinZip, but it's a whole lot easier!

« Specifically, we're going to compress text files

e Characters in a text file are all encoded by bits
— bit: the smallest piece of information on a computer
("zero” or “one”)
— your computer automatically converts the bits into the
characters you expect to see

e Normally, all characters are encoded by the same number
of bits

— this makes it easy to find the boundaries between characters

¢ One character encoding is the American Standard Code for
Information Interchange
— better known as ASCII

ASCII Table

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
0 00 Nul 32 20 Space 64 40 @ 96 60 °
1 01 Startof heading 33 21 ! 65 41 A 97 61 a
2 0z Statoftext 34 22 " 66 42 B 98 62 b
3 03 Endoftext 35 23 # 67 43 C 99 63 «c
4 04 Endoftransmit 36 24 § 68 44 D 100 64 d
5 0S5 Enquiry 37 25 % 69 45 E 101 65 e
6 06 Acknowledge 38 26 & 70 46 F 10z 66 f
7 07 Audible bell 39 27 ! 71 47 G 103 67 o
8 08 Backspace 40 28 72 48 H 104 68 h
8 09 Horizontal tab 41 28) 73 49 I 105 69 i

10 OA Line feed 42 2a * 74 4A J 106 64 3
11 OB Verticaltab 43 2B + 75 4B K 107 6B k
12 0OC Form feed 44 2C , 76 4C L 108 6C 1
13 0D Carriage return 45 2D - 77 4D M 109 6D m
14 OE Shift out 46 2E . 78 4E N 110 6E n
15 OF Shiftin 47 2F / 79 4F O 111 6F o
16 10 Datalink escape 45 30 O 80 SO P 112 70 p
17 11 Device control 1 49 31 1 81 51 Q 113 71 g
18 12 Device control 2 50 32 2 82 52 R 114 72 r
18 13 Device control 3 51 33 3 83 53 5 115 73 s
20 14 Device control 4 52 34 4 84 54 T 116 74 t©
21 15 Neg.acknowledge 53 35 S5 85 55 U 117 75 u
22 16 Synchronous idle 54 36 6 86 56 V 118 76 v
23 17 Endtrans. block 55 37 7 87 57 W 119 77w
24 18 Cancel 56 38 8 88 58 X 120 78 x
25 18 End of medium 57 38 8 89 58 ¥ 121 79y
26 1A Substitution 58 34 90 s5a Z 12z A oz
27 1B Escape 59 3B 91 SB [123 7B {

28 1C File separator 60 3C < 92 S5C 1z4 7C |

29 1D Group separator 61 3D = 93 5D] 125 7D }

30 1E Record separator 62 3E > 94 SE * 126 7E ~
31 1F Unit separator 63 3F ? 95 SF 127 7F O

e The original version of ASCII had 128 characters
— this fit perfectly into 7 bits (27 = 128)

e But the standard data size is 8 bits (i.e. a byte)
— original ASCII used the 8t bit as a “parity” (odd or even) bit
— ...which didn’t work out very well

e Eventually, 128 characters wasn't enough
— Extended ASCII has 256 characters
« this fits perfectly into 8 bits (28 = 256)
e can represent 00000000 to 11111111 (binary)
e can represent 0 to 255 (decimal)

Extended ASCII Table

Dec Hex Char | Dec Hex Char | Dec Hex Char | Dec Hex Char
128 80 ¢ 160 A0 & 19z co L 224 EO
129 81 1 161 A1 i 193 c1 L 225 E1 B
130 82 é 162 A2 6 194 Cz2 T 226 Ez2 T
131 83 & 163 A3 1 195 C3 |} 227 E3 n
132 84 & 164 A4 #© 196 C4 - 228 E4 %
133 85 a 165 a5 I 197 C5 4 229 ES5 o
134 86 & 166 2 198 C6 | 230 E6 n
135 87 ¢ 167 199 c7 | 231 E7 1
136 88 & 168 200 cg L 232 E8 ¢
137 89 & 169 201 C9 f 233 E9 ©
138 8A & 170 20z ca & 234 EA Q
139 8B 1 171 203 CB ¥ 235 EB &
140 8C i 172 204 cC JF 236 EC w
141 8D i 173 205 CD = 237 ED @
142 8E A 174 206 CE % 238 EE ¢
143 8F & 175 207 CF + 239 EF n
144 90 E 176 208 Dpo L 240 FO =
145 91 @& 177 209 D1 241 F1 %
146 92 E 178 210 D2 T 242 Fz =z
147 93 & 179 211 p3 L 243 F3 <
148 94 & 180 212 D4 & 244 F4 [
149 95 & 181 213 DS 245 F5 |
150 96 1 182 214 D6 246 F6 =+
151 97 0 183 215 D07 247 F7 =
15z 98 ¢ 184 216 D8 + 248 F8 °
153 99 0 185 217 D9 243 F9
154 94 U 186 218 DA 250 FA
155 9B ¢ 187 z19 0B 251 FB
156 9C £ 188 2z0 DC g 252 FC =
157 9D ¥ 189 221 oD | 253 FD
158 9E R 190 22z DE | 254 FE ®
159 9F f 191 223 DF W 255 FF O

Text Files

« In simple text files, each byte (8 bits) represents a single
character

« If we want to compress the file, we have to do better
— otherwise, we won't improve the old file

e What if different characters are represented by different
numbers of bits?

— characters that appear frequently will require fewer bits
— characters that appear infrequently will require more bits

e The Huffman algorithm finds an ideal variable-length way
of encoding the characters for a specific file

Huffman Algorithm

e The Huffman algorithm creates a Huffman tree

e This tree represents the variable-length character encoding

¢ In a Huffman tree, the left and right children each represent a
single bit of information

— going left is a bit of value zero
— going right is a bit of value one

e But how do we create the Huffman tree?

Creating a Huffman Tree

* First, we have to know how frequently each character
occurs in the file

e Then, we construct a leaf node for every character that
occurs at least once (i.e. has non-zero frequency)

— we don't care about letters that never occur, because we won't
have to encode them in this particular file

e We now have a list of nodes, each of which contains a
character and a frequency

Creating a Huffman Tree

¢ So we've got a list of nodes
— we can also think of these nodes as subtrees

e Until we're left with a single tree
— pick the two subtrees with the smallest frequencies

— combine these nodes into a new subtree

« this subtree has a frequency equal to the sum of the two frequencies
of its children

e Now we've got our Huffman Tree

10

Creating a Huffman Tree

« Visual example of the last few slides:
— Suppose the file has 3'a’s, 3'b’s, 1'c’, 1 'X/, and 2'y’s
— (subtrees displayed in sorted order, according to frequency)

OOOOO

Creating a Huffman Tree

e Visual example of the last few slides:
— Suppose the file has 3'a’s, 3'b’s, 1'c’, 1 'x’, and 2y
— (subtrees displayed in sorted order, accordlng to frequency)

@&00

Creating a Huffman Tree

« Visual example of the last few slides:
— Suppose the file has 3'a’s, 3'b’s, 1'c’, 1 'X/, and 2'y’s
— (subtrees displayed in sorted order, according to frequency)

Creating a Huffman Tree

e Visual example of the last few slides:
— Suppose the file has 3'a’s, 3'b’s, 1'c’, 1'X/, and 2'y’s
— (subtrees displayed in sorted order, according to frequency)

Creating a Huffman Tree

« Visual example of the last few slides:
— Suppose the file has 3'a’s, 3'b’s, 1'c’, 1 'X/, and 2'y’s
— (subtrees displayed in sorted order, according to frequency)

9 9 15

Creating a Huffman Tree

e Recall also that:
— moving to the left child means 0
— moving to the right child means 1

16

Creating a Huffman Tree

e These are the character encodings for the previous tree:
— 00 is the character encoding for 'y’
— 010 is the character encoding for ‘c’
— 011 is the character encoding for ‘x’
— 10 is the character encoding for ‘a’
— 11 is the character encoding for ‘b’

* Notice that characters with higher frequencies have shorter
encodings
—'a’,'b’, and 'y’ all have 2 character encodings
— ‘¢’ and X’ have 3 character encodings

¢ Once we have our tree, the frequencies don’t matter
— we just needed the frequencies to compute the encodings

17

Reading and Writing Bits

e So, the character encoding for 'x"is 011

e But we don't want to write the string “"011” to a file
// assume output writes to a file
output.print(“011”); // bad!

e Why?
— we just replaced a single character ('x”) with three characters (*0’,
‘1’, and ‘1)
— so0 now we're using 24 bits instead of just 8 bits!

e Instead, we need a way to read and write a single bit

18

Reading and Writing Bits

e To write a single bit, Stuart Reges (author of book) wrote
BitOutputStream

— The Encode.java program uses BitOutputStream and the
character encodings from your Huffman tree to encode a file

e To read a single bit, Stuart wrote BitInputStream

— The Decode.java program opens a BitInputStream to
read the individual bits of the encoded file

— ...but it passes this BitInputStream to you and makes
you do all the work

e The only method you care about is in BitInputStream:

// reads and returns the next bit in this input stream
public int readBit()

19

Bit Input/Output Streams

* BitInputStream: like any other stream, but allows you to read one bit at
a time from input until it is exhausted.

public BitInputStream(String file) Creates stream to read bits from file with given
name

public int readBit () Reads a single 1 or 0; returns -1 at end of file

public void close() Stops reading from the stream

» BitOutputStream: same, but allows you to write one bit at a time.

public BitOutputStream(String file) Creates stream to write bits to file with
given name

public void writeBit (int bit) Writes a single bit

public void close() Stops reading from the stream

20

10

Decoding an Encoded File

e To decode a file:

— Start at the top of the Huffman tree
— Until you're at a leaf node

¢ Read a single bit (0 or 1)

* Move to the appropriate child (0 > left, 1 > right)
— Write the character at the leaf node

— Go back to the top of the tree and repeat until you've
decoded the entire file

21

e But how do we know when the file ends?

e Every file must consist of a whole number of bytes
— so the number of bits in a file must be a multiple of 8

e This was fine when every character was also exactly one
byte, but it might not work out well with our variable-length
encodings

— Suppose your encoding of a file is 8001 bits long
— Then the resulting encoded file will have 8008 bits

— Clearly, there are 7 bits at the end of the encoded file that
don't correspond data in the original file

— But 7 is a lot of bits for Huffman, and it’s likely that we would
decode a few extra characters

22

1

e To get around this, we're going to introduce a “fake”
character at the end of our file

— we'll call this fake character the “pseudo-eof” character
— “pseudo-eof”: pseudo end-of-file

e This character does not actually exist in the original file
— it just lets us know when to stop

¢ Because the pseudo-eof is fake, it should have a character
value different than the other characters

— characters have values 0 to X, so our pseudo-eof will have value
(X+1) (i.e. one larger than the largest character value)

e Using the pseudo-eof when creating a Huffman tree:

— you'll need to create a leaf node containing the character
value for your pseudo-eof with frequency 1 when you're
creating the other leaf nodes

— the rest of the algorithm stays the same
e Using the pseudo-eof when decoding a file:

— if you ever decode the pseudo-eof (i.e. reach the leaf node
containing the pseudo-eof), you need to stop decoding

— we don’t want to decode the value of the pseudo-eof because
the pseudo-eof is completely fake

12

Using HuffmanTree

e There are three main/client programs for this assigment

* MakeCode.java outputs the character encoding to a file

— you must complete the first part of the assignment to use
MakeCode.java

e Encode.java takes a text file and a character encoding file. It
uses these files to output an encoded file.

 Decode.java takes an encoded file and a character encoding
file. It uses these files to output a decoded file.

— you must complete the second part of the assignment to use
Decode.java

Using HuffmanTree

e Using the three main/client programs on hamlet.txt

e We give hamlet.txt to MakeCode.java. MakeCode.java
produces the character encoding file (which we'll call
hamlet.code)

e We give hamlet.txt and hamlet.code to Encode.java.
Encode.java produces the encoded file (which we'll call
hamlet.short)

e We give hamlet.short and hamlet.code to Decode.java.
Decode.java produces a decoded file (which we'll call
hamlet.new). hamlet.new is identical to hamlet.txt.

13

HuffmanTree: Part 11

e Given a bunch of bits, how do we decompress them?

e Hint: HuffmanTrees have an encoding "prefix property."
— No encoding A is the prefix of another encoding B

— L.e. never will x — 011 and y — 011100110 be true for any two
characters xand y

e Tree structure tells how many bits represent "next" character

e While there are more bits in the input stream:
— Read a bit
— If zero, go left in the tree; if one, go right

— If at a leaf node, output the character at that leaf and go back to
the tree root

HuffmanTree: Part II cont’'d.

HuffmanTree for "ab ab cab" Sample encoding
111000..
10
1
6
0 1
—_ 1A ab 1A
3 3
0/\1 lbt [al
1 1
'c' EOF

28

14

