
Week 6

review; file processing
Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.

Except where otherwise noted, this work is licensed under:
http://creativecommons.org/licenses/by-nc-sa/3.0

2

Python!
•  Created in 1991 by Guido van Rossum (now at Google)

–  Named for Monty Python

•  Useful as a scripting language
–  script: A small program meant for one-time use
–  Targeted towards small to medium sized projects

•  Used by:
–  Google, Yahoo!, Youtube
–  Many Linux distributions
–  Games and apps (e.g. Eve Online)

3

Interpreted Languages
•  interpreted

–  Not compiled like Java
–  Code is written and then directly executed by an interpreter
–  Type commands into interpreter and see immediate results

Computer Runtime
Environment Compiler Code Java:

Computer Interpreter Code Python:

4

The print Statement
print("text”)
print() (a blank line)

–  Escape sequences such as \" are the same as in Java
–  Strings can also start/end with '

swallows.py

1
2
3
4

print("Hello, world!”)
print()
print("Suppose two swallows \"carry\" it together.”)
Print('African or "European" swallows?’)

5

Comments
comment text (one line)

swallows2.py

1
2
3
4
5
6

Suzy Student, CSE 142, Fall 2097
This program prints important messages.
Print("Hello, world!”)
Print() # blank line
Print("Suppose two swallows \"carry\" it together.”)
Print('African or "European" swallows?’)

6

Expressions
•  Arithmetic is very similar to Java

–  Operators: + - * / % (plus ** for exponentiation)
–  Precedence: () before ** before * / % before + -
–  Integers vs. real numbers

>>> 1 + 1
2
>>> 1 + 3 * 4 - 2
11
>>> 7 / 2
3
>>> 7.0 / 2
3.5

7

Variables and Types
•  Declaring: same syntax as assignment; no type is written
•  Types: Looser than Java

–  Variables can change types as a program is running

•  Operators: no ++ or --

Java Python
int x = 2;
x++;
System.out.println(x);

x = x * 8;
System.out.println(x);

double d = 3.2;
d = d / 2;
System.out.println(d);

x = 2
x = x + 1
print(x)

x = x * 8
print(x)

d = 3.2
d = d / 2
print(d)

Value Java type Python
42 int int

3.14 double float

"ni!" String str

8

String Multiplication
•  Python strings can be multiplied by an integer.

–  Result: many copies of the string concatenated together

>>> "hello" * 3
"hellohellohello"

>>> 10 * "yo “
yo yo yo yo yo yo yo yo yo yo

>>> 2 * 3 * "4”
444444

9

String Concatenation
•  Integers and strings cannot be concatenated in Python.

Workarounds:
–  str(value) - converts a value into a string
–  print value, value - prints value twice, separated by

space
>>> x = 4
>>> "Thou shalt not count to " + x + "."
TypeError: cannot concatenate 'str' and 'int' objects

>>> "Thou shalt not count to " + str(x) + "."
Thou shalt not count to 4.

>>> x + 1, "is out of the question."
5 is out of the question.

10

The for Loop
for name in range([min,] max [, step]):
 statements

–  Repeats for values min (inclusive) to max (exclusive)
•  min and step are optional (default min 0, step 1)

>>> for i in range(4):
... print(i)
0
1
2
3
>>> for i in range(2, 5):
... print(i)
2
3
4
>>> for i in range(15, 0, -5):
... print(i)
15 10 5

11

Functions
•  Function: Equivalent to a static method in Java.

def name():
 statement
 statement
 ...
 statement

–  'main' code (not an actual method) appears below functions
–  Statements inside a function must be indented

hello2.py

1
2
3
4
5
6
7
8

Prints a helpful message.
def hello():
 print("Hello, world!”)
 print("How are you?”)

main (calls hello twice)
hello()
hello()

12

Parameters
def name(parameter, parameter, ..., parameter):
 statements

–  Parameters are declared by writing their names (no types)

>>> def print_many(word, n):
... for i in range(n):
... print(word)

>>> print_many("hello", 4)
hello
hello
hello
hello

13

Default Parameter Values
def name(parameter=value, ..., parameter=value):
 statements

–  Can make parameter(s) optional by specifying a default value

>>> def print_many(word, n=1):
... for i in range(n):
... print(word)

>>> print_many("shrubbery")
shrubbery
>>> print_many("shrubbery", 4)
shrubbery
shrubbery
shrubbery
shrubbery

14

Returning Values
 def name(parameters):
 statements
 ...
 return value

>>> def ftoc(temp):
... tempc = 5.0 / 9.0 * (temp - 32)
... return tempc

>>> ftoc(98.6)
37.0

15

DrawingPanel
•  Use instructor-provided drawingpanel.py file

•  At the top of your program, write:
–  from drawingpanel import *

•  Panel's canvas field behaves like Graphics g in Java

16

DrawingPanel Example

draw1.py

1
2
3
4
5

from drawingpanel import *

panel = DrawingPanel(400, 300)
panel.set_background("yellow")
panel.canvas.create_rectangle(100, 50, 200, 300)

17

Drawing Methods

–  Notice, methods take x2/y2 parameters, not width/height

Java Python
drawLine panel.canvas.create_line(x1, y1, x2, y2)
drawRect,
fillRect

panel.canvas.create_rectangle(x1, y1, x2,
y2)

drawOval,
fillOval

panel.canvas.create_oval(x1, y1, x2, y2)

drawString panel.canvas.create_text(x, y, text="text")

setColor (see next slide)

setBackgroun
d

panel.set_background(color)

18

Math commands
from math import *

Function name Description
ceil(value) rounds up

cos(value) cosine, in radians

degrees(value) convert radians to degrees
floor(value) rounds down
log(value, base) logarithm in any base

log10(value) logarithm, base 10

max(value1, value2, ...) largest of two (or more) values
min(value1, value2, ...) smallest of two (or more) values

radians(value) convert degrees to radians

round(value) nearest whole number

sin(value) sine, in radians
sqrt(value) square root

tan(value) tangent

Constant Description
e 2.7182818...

pi 3.1415926...

19

Strings

•  Accessing character(s):
 variable [index]
 variable [index1:index2]

–  index2 is exclusive
–  index1 or index2 can be

omitted (end of string)

index 0 1 2 3 4 5 6 7
or -8 -7 -6 -5 -4 -3 -2 -1

character P . D i d d y

>>> name = "P. Diddy"
>>> name[0]
'P'
>>> name[7]
'y'
>>> name[-1]
'y'
>>> name[3:6]
'Did'
>>> name[3:]
'Diddy'
>>> name[:-2]
'P. Did'

20

String Methods

>>> name = "Martin Douglas Stepp"
>>> name.upper()
'MARTIN DOUGLAS STEPP'
>>> name.lower().startswith("martin")
True
>>> len(name)
20

Java Python
length len(str)

startsWith, endsWith startswith, endswith

toLowerCase, toUpperCase upper, lower,
isupper, islower,
capitalize, swapcase

indexOf find

trim strip

21

 raw_input : Reads a string from the user's keyboard.
–  reads and returns an entire line of input

•  to read a number, cast the result of raw_input to an int

raw_input

>>> name = raw_input("Howdy. What's yer name? ")
Howdy. What's yer name? Paris Hilton

>>> name
'Paris Hilton'

>>> age = int(raw_input("How old are you? "))
How old are you? 53
>>> print("Your age is", age)
Your age is 53

22

if/else
 if condition:
 statements
 elif condition:
 statements
 else:
 statements

–  Example:
 gpa = input("What is your GPA? ")
 if gpa > 3.5:
 print("You have qualified for the honor roll.”)
 elif gpa > 2.0:
 print("Welcome to Mars University!”)
 else:
 print("Your application is denied.”)

23

if ... in
 if value in sequence:
 statements

–  The sequence can be a range, string, tuple, or list

–  Examples:

 x = 3
 if x in range(0, 10):
 print("x is between 0 and 9”)

 name = raw_input("What is your name? ")
 name = name.lower()
 if name[0] in "aeiou":
 print("Your name starts with a vowel!”)

24

Logical Operators

Operator Example Result

and (2 == 3) and (-1 < 5) False

or (2 == 3) or (-1 < 5) True

not not (2 == 3) True

Operator Meaning Example Result

== equals 1 + 1 == 2 True

!= does not equal 3.2 != 2.5 True

< less than 10 < 5 False

> greater than 10 > 5 True

<= less than or equal to 126 <= 100 False

>= greater than or equal to 5.0 >= 5.0 True

25

while Loops
 while test:
 statements

>>> n = 91
>>> factor = 2 # find first factor of n

>>> while n % factor != 0:
... factor += 1
...

>>> factor
7

26

bool

•  Python's logic type, equivalent to boolean in Java
–  True and False start with capital letters

>>> 5 < 10
True

>>> b = 5 < 10
>>> b
True

>>> if b:
... print("The bool value is true”)
...
The bool value is true

>>> b = not b
>>> b
False

27

Random Numbers
 from random import *

 randint(min, max)
–  returns a random integer in range [min, max] inclusive

 choice(sequence)
–  returns a randomly chosen value from the given sequence

•  the sequence can be a range, a string, ...

>>> from random import *
>>> randint(1, 5)
2
>>> randint(1, 5)
5
>>> choice(range(4, 20, 2))
16
>>> choice("hello")
'e'

28

Tuple
tuple_name = (value, value, ..., value)

–  A way of "packing" multiple values into one variable

name, name, ..., name = tuple_name
–  "unpacking" a tuple's contents into multiple variables

>>> x = 3
>>> y = -5
>>> p = (x, y, 42)
>>> p
(3, -5, 42)

>>> a, b, c = p
>>> a
3
>>> b
-5
>>> c
42

29

Tuple as Parameter/Return
def name((name, name, ..., name), ...):
 statements

–  Declares tuple as a parameter by naming each of its pieces

 return (name, name, ..., name)

>>> def slope((x1, y1), (x2, y2)):
... return (y2 - y1) / (x2 - x1)

>>> p1 = (2, 5)
>>> p2 = (4, 11)
>>> slope(p1, p2)
3

>>> def roll2():
... die1 = randint(1, 6)
... die2 = randint(1, 6)
... return (die1, die2)

>>> d1, d2 = roll2()

File Processing

31

Reading Files
 name = open("filename")

–  opens the given file for reading, and returns a file object

 name.read() - file's entire contents as a string

>>> f = open("hours.txt")
>>> f.read()
'123 Susan 12.5 8.1 7.6 3.2\n
456 Brad 4.0 11.6 6.5 2.7 12\n
789 Jenn 8.0 8.0 8.0 8.0 7.5\n'

32

Line-based File Processing
 name.readline() - next line from file as a string

–  Returns an empty string if there are no more lines in the file

 name.readlines() - file's contents as a list of lines
–  (we will discuss lists in detail next week)

>>> f = open("hours.txt")
>>> f.readline()
'123 Susan 12.5 8.1 7.6 3.2\n'

>>> f = open("hours.txt")
>>> f.readlines()
['123 Susan 12.5 8.1 7.6 3.2\n',
'456 Brad 4.0 11.6 6.5 2.7 12\n',
'789 Jenn 8.0 8.0 8.0 8.0 7.5\n']

33

Line-based Input Template
•  A file object can be the target of a for ... in loop

•  A template for reading files in Python:

 for line in open("filename"):
 statements

>>> for line in open("hours.txt"):
... print(line.strip()) # strip() removes \n

123 Susan 12.5 8.1 7.6 3.2
456 Brad 4.0 11.6 6.5 2.7 12
789 Jenn 8.0 8.0 8.0 8.0 7.5

34

Exercise
•  Write a function stats that accepts a file name as a

parameter and that reports the longest line in the file.
–  example input file, vendetta.txt:

 Remember, remember the 5th of November.
 The gunpowder, treason, and plot.
 I know of no reason why the gunpowder treason
 should ever be forgot.

–  expected output:

>>> stats(”vendetta.txt")
longest line = 46 characters
I know of no reason why the gunpowder treason

35

Exercise Solution
def stats(filename):
 longest = ""
 for line in open(filename):
 if len(line) > len(longest):
 longest = line

 print("Longest line =", len(longest))
 print(longest)

36

Writing Files
 name = open("filename", "w") # write
 name = open("filename", "a") # append

–  opens file for write (deletes any previous contents) , or
–  opens file for append (new data is placed after previous data)

 name.write(str) - writes the given string to the file

 name.close() - closes file once writing is done

>>> out = open("output.txt", "w")
>>> out.write("Hello, world!\n")
>>> out.write("How are you?")
>>> out.close()

>>> open("output.txt").read()
'Hello, world!\nHow are you?'

37

Exercise
•  Write a function remove_lowercase that accepts two file

names and copies the first file's contents into the second
file, with any lines that start with lowercase letters removed.
–  example input file, carroll.txt:

 Beware the Jabberwock, my son,
 the jaws that bite, the claws that catch,
 Beware the JubJub bird and shun
 the frumious bandersnatch.

–  expected behavior:

>>> remove_lowercase("carroll.txt", "out.txt")

>>> print(open("out.txt").read())
Beware the Jabberwock, my son,
Beware the JubJub bird and shun

38

Exercise Solution
def remove_lowercase(infile, outfile):
 output = open(outfile, "w")
 for line in open(infile):

 if not line[0] in "abcdefghijklmnopqrstuvwxyz":
 output.write(line)
 output.close()

