
Week 8

Classes and Objects
Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.

Except where otherwise noted, this work is licensed under:
http://creativecommons.org/licenses/by-nc-sa/3.0

2

OOP and Python
•  Python was built as a procedural language

–  OOP exists and works fine, but feels a bit more "tacked on"

–  Java probably does classes better than Python (gasp)

3

Defining a Class
•  Declaring a class:

 class Name:
 ...

–  class name is capitalized (e.g. Point)

–  saved into a file named name.py (filename is lowercase)

4

Fields
•  Declaring a field:

 name = value

Fields may also be declared private by adding the prefix __

point.py

1
2
3

class Point:
 x = 0
 y = 0

privatepoint.py

1
2
3

Class PrivatePoint:
 __x = 0
 __y = 0

5

Using a Class
 from name import *

–  client programs must import the classes they use
–  the file name (lowercase), not class name, is used

point_main.py

1
2
3
4
5
6
7
8

from point import *

main
p1 = Point()
p1.x = 7
p1.y = -3

...

6

"Implicit" Parameter (self)
•  Java object methods refer to the object's fields implicitly:
 public void translate(int dx, int dy) {
 x += dx;
 y += dy; // change this object's x/y
 }

•  Python's implicit parameter is named self
–  self must be the first parameter of any object method
–  access the object's fields as self.field

 def translate(self, dx, dy):
 self.x += dx
 self.y += dy

7

Methods
 def name(self [, parameter, ..., parameter]):
 statements

–  Example:
 class Point:
 def translate(self, dx, dy):
 self.x += dx
 self.y += dy
 ...

–  Exercise: Write the following methods in class Point:
• set_location
• draw
• distance

8

Exercise Answer
point.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

from math import *

class Point:
 x = 0
 y = 0

 def set_location(self, x, y):
 self.x = x
 self.y = y

 def draw(self, panel):
 panel.canvas.create_oval(self.x, self.y, \
 self.x + 3, self.y + 3)
 panel.canvas.create_text(self.x, self.y, \
 text=str(self), anchor="sw")

 def distance(self, other):
 dx = self.x - other.x
 dy = self.y - other.y
 return sqrt(dx * dx + dy * dy)

9

Initializing Objects
•  Right now, clients must initialize Points like this:

 p = Point()
 p.x = 3
 p.y = -5

•  We'd prefer to be able to say:

 p = Point(3, -5)

10

Constructors
 def __init__(self [, parameter, ..., parameter]):
 statements

–  a constructor is a special method with the name __init__
that initializes the state of an object

–  Example:

 class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

11

More About Fields

–  fields can be declared directly inside class,
or just in the constructor as shown here (more common)

point.py

1
2
3
4
5

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y
 ...

>>> p = Point(5, -2)
>>> p.x
5
>>> p.y
-2

12

Printing Objects
•  By default, Python doesn't know how to print an object:

•  We'd like to be able to print a Point object and have its
 state shown as the output.

>>> p = Point(5, -2)
>>> print p
<Point instance at 0x00A8A850>

13

Printable Objects: __str__
 def __str__(self):

 return string

–  converts an object into a string (like Java toString method)
–  invoked automatically when str or print is called

def __str__(self):

 return "(" + str(self.x) + ", " + str(self.y) + ")"

>>> p = Point(5, -2)
>>> print p
(5, -2)
>>> print "The point is " + str(p) + "!"
The point is (5, -2)!

14

Complete Point Class
point.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

from math import *

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def distance_from_origin(self):
 return sqrt(self.x * self.x + self.y * self.y)

 def distance(self, other):
 dx = self.x - other.x
 dy = self.y - other.y
 return sqrt(dx * dx + dy * dy)

 def translate(self, dx, dy):
 self.x += dx
 self.y += dy

 def __str__(self):
 return "(" + str(self.x) + ", " + str(self.y) + ")"

15

Inheritance
•  A class may inherit methods and attributes from another

class:

 class Name(ParentClass):
 def __init__(self):
 ParentClass.__init__(self)
 ...

 A class may also inherit from multiple parent classes.
class Name(Parent1, Parent2):
 def __init__(self):
 ParentClass.__init__(self)
 ...

16

Multiple Inheritance
•  A class may also inherit from multiple parent classes.

 class Name(Parent1, Parent2):
 def __init__(self):
 Parent1.__init__(self)
 Parent2.__init__(self)
 ...

17

Multiple Inheritance
 Order is important. If two classes have the same method
names then the class listed first will have precedence.

 Use class names to refer to specific classes.
>>> class A():
... def name(self): return “I am a”
>>> class B():
... def name(self): return “I am b”
>>> class C(A, B):
... def name1(self): self.name(self)
... def name2(self): B.name(self)

>>> c = C()
>>> print c.name1()
“I am a”
>>> print c.name2()
“I am b”

18

Python Object Details
•  Drawbacks

–  Not easy to have a class with multiple constructors
–  Must explicitly declare self parameter in all methods
–  Strange names like __str__, __init__

•  Benefits
–  operator overloading: Define < by writing __lt__ , etc.

http://docs.python.org/ref/customization.html
Fun with iterators!
http://diveintopython3.org/iterators.html

