
CSE 143
Lecture 23

Priority Queues and Huffman Encoding

slides created by Daniel Otero and Marty Stepp

http://www.cs.washington.edu/143/

2

Assignment #8

• You’re going to make a Winzip clone except

– without a GUI (graphical user interface)

– it only works with a weird proprietary format (not “.zip”)

• Your program should be able to compress/decompress files

– “Compression” refers to size (bytes); compressed files are smaller

3

Why use compression?

• Reduce the cost of storing a file

– …but isn’t disk space cheap?

• Compression applies to many more things:

– Store all personal photos without exhausting disk

– Reduce the size of an e-mail attachment to meet size limit

– Make web pages and images smaller so they load fast

– Reduce raw media to reasonable sizes (MP3, DivX, FLAC, etc.)

– …and on…

• Don’t want to use your 8th assignment? Real-world apps:

– Winzip or WinRAR for Windows

– StuffitExpander for Mac

– Linux guys…you know what to do

4

What you’ll need

• A new data structure: the Priority Queue.

– so it’s, like, a queue…but with, like…priorities?

• A sweet new algorithm: Huffman Encoding

– Makes a file more space-efficient by

• Using less bits to encode common characters

• Using more bits to encode rarer characters

– But how do we know which characters are common/rare?

5

Problems we can’t solve (yet)

• The CSE lab printers constantly accept and complete jobs from
all over the building. Suppose we want them to print faculty
jobs before student jobs, and grad before undergrad?

• You are in charge of scheduling patients for treatment in the
ER. A gunshot victim should probably get treatment sooner
than that one guy with a sore shoulder, regardless of arrival
time. How do we always choose the most urgent case when
new patients continue to arrive?

• Why can’t we solve these problems efficiently with the data
structures we have (list, sorted list, map, set, BST, etc.)?

6

Some bad “fixes” (opt.)

• list: store all customers/jobs in an unordered list, remove min/max one by
searching for it

– problem: expensive to search

• sorted list: store all in a sorted list, then search it in O(log n) time with
binary search

– problem: expensive to add/remove

• binary search tree: store in a BST, search it in O(log n) time for the min
(leftmost) element

– problem: tree could be unbalanced �

• auto-balancing BST

– problem: extra work must be done to constantly re-balance the tree

7

Priority queue

• priority queue: a collection of ordered elements that provides
fast access to the minimum (or maximum) element

– a mix between a queue and a BST

– usually implemented using a tree structure called a heap

• priority queue operations:

– add adds in order; O(1) average, O(log n) worst

– peek returns minimum element; O(1)

– remove removes/returns minimum element; O(log n) worst

– isEmpty ,
clear ,
size ,
iterator O(1)

8

Java's PriorityQueue class

public class PriorityQueue< E> implements Queue< E>

Method/Constructor Description

public PriorityQueue< E>() constructs new empty queue

public void add(E value) adds given value in sorted order

public void clear() removes all elements

public Iterator< E> iterator() returns iterator over elements

public E peek() returns minimum element

public E remove() removes/returns minimum element

9

Inside a priority queue

• Usually implemented as a “heap”: a sort of tree.

• Instead of being sorted left->right, it’s sorted up->down

– Only guarantee: children are lower-priority than ancestors

996040

8020

10

50 700

85

65

10

Exercise: Firing Squad

• Marty has decided that TA performance is unacceptably low.

• We are given the task of firing all TAs with < 2 qtrs

• Write a class FiringSquad . Its main method should read a

list of TAs from a file, find all with sub-par experience, and
replace them. Print the final list of TAs to the console.

• Input format:
taName numQuarters

taName numQuarters

taName numQuarters

… etc.

NOTE: No guarantees about input order

11

The caveat: ordering

• For a priority queue to work, elements must have an ordering

• In Java, this means using the Comparable<E> interface

• Reminder:

public class Foo implements Comparable<Foo> {

…

public int compareTo(Foo other) {

// Return positive, zero, or negative number if thi s object

// is bigger, equal, or smaller than other, respect ively.

…

}

}

Let’s fix it…

12

ASCII

• At the machine level, everything is binary (1s and 0s)

• Somehow, we must "encode" all other data as binary

• One of the most common character encodings is ASCII

– Maps every possible character to a number ('A' → 65)

• ASCII uses one byte (or eight bits) for each character:

Char ASCII value ASCII (binary)

' ' 32 00100000

'a' 97 01100001

'b' 98 01100010

'c' 99 01100011

'e' 101 01100101

'z' 122 01111010

For fun and profit: http://www.asciitable.com/

13

Huffman Encoding

• ASCII is fine in general case, but we know letter frequencies.

• Common characters account for more of a file’s size, rare
characters for less.

• Idea: use fewer bits for high-frequency characters.

Char ASCII value ASCII (binary) Hypothetical Huffman

' ' 32 00100000 10

'a' 97 01100001 0001

'b' 98 01100010 01110100

'c' 99 01100011 001100

'e' 101 01100101 1100

'z' 122 01111010 00100011110

14

Compressing a file

To compress a file, we follow these steps:

• Count occurrences of each character in the file
– Using: ?

• Place each character into priority queue using frequency comparison

– Using: a priority queue

• Convert priority queue to another binary tree via mystery algorithm X

– Using: binary tree

• Traverse the tree to generate binary encodings of each character

– Using: ?

• Iterate over the source file again, outputting one of our binary encodings
for each character we find.

15

"Mystery Algorithm X"

• The secret:

– We’ll build a tree with common chars on top

– It takes fewer links to get to a common char

– If we represent each link (left or right) with one bit (0 or 1), we
automagically use fewer bits for common characters

• Tree for the example file containing text “ab ab cab”:

?

' '

? ?

?

'c' EOF

'b' 'a'

16

Building the Huffman tree

• Create a binary tree node for each character containing:

– The character

– # occurences of that character

• Shove them all into a priority queue.

• While the queue has more than one element:

– Remove the two smallest nodes from the priority queue

– Join them together by making them children of a new node

– Set the new node’s frequency as the sum of the children

– Reinsert the new node into the priority queue

• Observation: each iteration reduces the size of the queue by 1.

17

Building the tree, cont’d

18

HuffmanTree: Part I

• Class for HW#8 is called HuffmanTree

– Does both compression and decompression

• Compression portion:

• public HuffmanTree(Map<Character, Integer> counts)

– Given a Map containing counts per character in an file, create its Huffman tree.

• public Map<Character, String> createEncodings()

– Traverse your Huffman tree and produce a mapping from each character in the tree to
its encoded binary representation as a String. For the previous example, the map is the
following: {' '=010, 'a'=11, 'b'=00, 'd'=011, 'n'=10}

• public void compress(InputStream in, BitOutputStream out)
throws IOException

– Read the text data from the given input file stream and use your Huffman encodings to
write a Huffman-compressed version of this data to the given output file stream

19

Bit Input/Output Streams

• Filesystems have a lowest size denomination of 1 byte.

– We want to read/write one bit at a time (1/8th of a byte)

• BitInputStream : like any other stream, but allows you to read one bit at

a time from input until it is exhausted.

• BitOutputStream : same, but allows you to write one bit at a time.

public BitInputStream(InputStream in) Creates stream to read bits from given input

public int readBit() Reads a single 1 or 0; returns -1 at end of file

public boolean hasNextBit() Returns true iff another bit can be read

public void close() Stops reading from the stream

public BitOutputStream(OutputStream out) Creates stream to write bits to given output

public void writeBit(int bit) Writes a single bit

public void writeBits(String bits) Treats each character of the given string as
a bit ('0' or '1') and writes each of those

bits to the output

public void close() Stops reading from the stream

20

HuffmanTree: Part II

• Given a bunch of bits, how do we decompress them?

• Hint: HuffmanTrees have an encoding "prefix property."

– No encoding A is the prefix of another encoding B

– I.e. never will x → 011 and y → 011100110 be true for any two

characters x and y

• Tree structure tells how many bits represent "next" character

• While there are more bits in the input stream:

– Read a bit

– If zero, go left in the tree; if one, go right

– If at a leaf node, output the character at that leaf and go back to
the tree root

21

HuffmanTree: Part II cont’d.

HuffmanTree for "ab ab cab" Sample encoding

111000…

→ "ab "

22

HuffmanTree: Part II cont’d.

• The decompression functionality of HuffmanTree is handled

by a single method:

• public void decompress(BitInputStream in, OutputStream out)
throws IOException

– Read the compressed binary data from the given input file stream and use your
Huffman tree to write a decompressed text version of this data to the given
output file stream.

– You may assume that all characters in the input file were represented in the
map of counts passed to your tree's constructor.

23

EOF?

• When reading from files, end is marked by special character:
EOF ("End Of File")

– NOT an ASCII character

– Special code used by each particular OS / language / runtime

• Do you need to worry about it?

– No, it doesn't affect you at all.

– You may however notice it in your character maps, so don't get
confused or worried.

– FYI: EOF prints as a ? on the console or in jGRASP. (binary 256)

24

Checked Exceptions

• Unchecked exceptions can occur without being explicitly
handled in your code

• Any subclass of RuntimeException or Error is unchecked:

– IllegalArgumentException

– IllegalStateException

– NoSuchElementException

• Checked exceptions must be handled explicitly

• Checked exceptions are considered more dangerous/important:

– FileNotFoundException

– Its parent, IOException

25

The throws clause

• What does the following mean:

public int foo() throws FileNotFoundException { …

• Not a replacement for commenting your exceptions

• A throws clause makes clear a checked exception could occur

• Passes the buck to the caller to handle the exception

• In HW#8's compress and decompress methods, we say
throws IOException to avoid having to handle

IOExceptions

