
CSE 143
Lecture 22

The Object class; Polymorphism

read 9.2 - 9.3

slides created by Marty Stepp and Ethan Apter

http://www.cs.washington.edu/143/

2

Class Object

• All types of objects have a superclass named Object .

– Every class implicitly extends Object

• The Object class defines several methods:

– public String toString()
Returns a text representation of the object,
often so that it can be printed.

– public boolean equals(Object other)
Compare the object to any other for equality.
Returns true if the objects have equal state.

3

Recall: comparing objects

• The == operator does not work well with objects.

== compares references to objects, not their state.

It only produces true when you compare an object to itself.

Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
if (p1 == p2) { // false

System.out.println("equal");
}

...

x 5 y 3
p1

p2

...

x 5 y 3

4

The equals method

compares the state of objects

– The default equals behavior acts just like the == operator.

if (p1.equals(p2)) { // false

System.out.println("equal");
}

• We can change this behavior by writing an equals method.

– The method should compare the state of the two objects and

return true when the objects have the same state.

5

Flawed equals method

public boolean equals(Point other) {
if (x == other.x && y == other.y) {

return true;
} else {

return false;
}

}

• It should be legal to compare a Point to any object
(not just other Point objects):

// this should be allowed
Point p = new Point(7, 2);
if (p.equals("hello")) { // false

...

6

equals and Object class

public boolean equals(Object name) {

statement(s) that return a boolean value;

}

– The parameter to equals must be of type Object in order to

override the default version of equals .

– Object is a general type that can match any object.

– Having an Object parameter means any object can be passed.

7

Another flawed version

public boolean equals(Object o) {
return (x == o.x && y == o.y);

}

• Does not compile:

Point.java:36: cannot find symbol
symbol : variable x
location: class java.lang.Object
return (x == o.x && y == o.y);

^

– Compiler: "o could be any object. Not every object has an x field."

8

Type-casting objects

• Solution: Type-cast the object parameter to a Point .

// almost correct version
public boolean equals(Object o) {

Point other = (Point) o;
return x == other.x && y == other.y;

}

• Casting objects is different than casting primitives.

– We're casting an Object reference into a Point reference.

– We're promising the compiler that o refers to a Point object.

9

Comparing different types

• When we compare Point objects to other types,

Point p = new Point(7, 2);
if (p.equals("hello")) { // should be false

...
}

– The code crashes:

Exception in thread "main"
java.lang.ClassCastException: java.lang.String

at Point.equals(Point.java:25)
at PointMain.main(PointMain.java:25)

– The culprit is the line with the type-cast:

public boolean equals(Object o) {
Point other = (Point) o;

10

The instanceof keyword

asks whether a variable refers to an object of a given type

variable instanceof type

– The above is an expression with a boolean result.

String s = "hello";
Point p = new Point();

if (s instanceof Point) {
...

}

expression result
s instanceof String true

s instanceof Object true

s instanceof Point false

p instanceof Point true

p instanceof Object true

p instanceof String false

null instanceof String false

11

Final equals method

// Returns whether o refers to a Point object with
// the same (x, y) coordinates as this Point object.
public boolean equals(Object o) {

if (o instanceof Point) {
// o is a Point; cast and compare it
Point other = (Point) o;
return x == other.x && y == other.y;

} else {
return false; // not a Point; cannot be equal

}
}

12

Polymorphism

• polymorphism: Ability for the same code to be used with

different types of objects and behave differently with each.

– System.out.println can print any type of object.

• Each one displays in its own way on the console.

– A Scanner can read data from any kind of InputStream .

– Every kind of OutputStream can write data, though they might

write this to different kinds of sources.

13

Coding with polymorphism

• We can use polymorphism with classes like OutputStream .

– Recall methods common to all OutputStream s:

– Recall part of the inheritance hierarchy for OutputStream :

Method Description

write(int b) writes a byte

close() stops writing (also flushes)

flush() forces any writes in buffers to be written

OutputStream

FileOutputStream

PrintStream

FilterOutputStream

14

Coding with polymorphism

• A variable of type T can refer to an object of any subclass of T.

OutputStream out = new PrintStream(new File("foo.txt "));
OutputStream out2 = new FileOutputStream("foo.txt");

– You can call any methods from OutputStream on out .

– You can not call methods specific to PrintStream (println).

• But how would we call those methods on out if we wanted to?

• When a method is called on out , it behaves as a
PrintStream .

out.write(0); // writes a 0 byte to foo.txt
out.close(); // closes the stream to foo.txt

15

Coding with polymorphism

• Some more polymorphism examples with OutputStream :

OutputStream out = new PrintStream(new File("foo.txt"));
out.write(0); // ok
out.println("hello"); // compiler error
((PrintStream) out).println("hello"); // ok
out.close(); // ok

OutputStream out2 = new FileOutputStream("foo.txt");
out2.println("hello"); // compiler error
((PrintStream) out2).println("hello"); // runtime error

16

Inheritance mystery

• 4-5 classes with inheritance relationships are shown.

• A client program calls methods on objects of each class.

– Some questions involve type-casting.

– Some lines of code are illegal and produce errors.

• You must read the code and determine its output or errors.

– For output, you must be precise

– For errors, you need only say that an error occurred (not identify
what kind of error occurred)

•We always place such a question on our final exams!

17

Inheritance mystery

• Steps to solving inheritance mystery:

1. Look at the variable type (if there is a cast, look at the casted
variable type). If the variable type does not have the requested
method the compiler will report an error.

2. If there was a cast, make sure the casted variable type is
compatible with the object type (i.e. ensure the object type is a
subclass of the variable type). If they are not compatible, a
runtime error (ClassCastException) will occur.

3. Execute the method in question, behaving like the object type (the
variable type and casted variable type no longer matter at all)

18

Exercise

• Assume that the following classes have been declared:

public class Snow {
public void method2() {

System.out.println("Snow 2");
}

public void method3() {
System.out.println("Snow 3");

}
}

public class Rain extends Snow {
public void method1() {

System.out.println("Rain 1");
}

public void method2() {
System.out.println("Rain 2");

}
}

19

Exercise

public class Sleet extends Snow {
public void method2() {

System.out.println("Sleet 2");
super.method2();
method3();

}

public void method3() {
System.out.println("Sleet 3");

}
}

public class Fog extends Sleet {
public void method1() {

System.out.println("Fog 1");
}

public void method3() {
System.out.println("Fog 3");

}
}

20

Exercise

What happens when the following examples are executed?

• Example 1:

Snow var1 = new Sleet();
var1.method2();

• Example 2:

Snow var2 = new Rain();
var2.method1();

• Example 3:

Snow var3 = new Rain();
((Sleet) var3).method3();

21

Technique 1: diagram

• Diagram the classes from top (superclass) to bottom.

22

Technique 2: table

method Snow Rain Sleet Fog

method1 Rain 1 Fog 1

method2 Snow 2 Rain 2 Sleet 2

Snow 2

method3()

Sleet 2

Snow 2

method3()

method3 Snow 3 Snow 3 Sleet 3 Fog 3

Italics - inherited behavior
Bold - dynamic method call

23

Example 1

• Example:

Snow var1 = new Sleet ();
var1.method2();

• Output:

Sleet 2
Snow 2
Sleet 3

object

variable

24

Example 2

• Example:

Snow var2 = new Rain ();
var2.method1();

• Output:

None!
There is an error,
because Snow does not
have a method1 .

variable

object

25

Example 3

• Example:

Snow var3 = new Rain ();
((Sleet)var3).method2();

• Output:

None!
There is an error
because a Rain is
not a Sleet .

object variable

