CSE 143
Lecture 22

The Object class; Polymorphism

read 9.2 - 9.3

slides created by Marty Stepp and Ethan Apter
http://www.cs.washington.edu/143/

Class (bj ect

o All types of objects have a superclass named Object .

— Every class implicitly extends Object

e The Object class defines several methods:

— public String toString()

Returns a text representation of the object,
often so that it can be printed.

— public boolean equals(Object other)

Compare the object to any other for equality.
Returns true if the objects have equal state.

Object

equals
finalize
getClass
hashCode
nofify
notifyAll
toString

wait

Point

Xy

distance
getx

gety
setlLocation
toString
translate

Recall: comparing objects

e The == operator does not work well with objects.
== compares references to objects, not their state.
It only produces true when you compare an object to itself.

Point p1 = new Point(5, 3);

Point p2 = new Point(5, 3);

f(pl == p2){ /] fal se
System.out.printin("equal®);

}

pl

p2 > X| 5 | y| 3

The equal s method

compares the state of objects

— The default equals behavior acts just like the == operator.

If(pl.equal s(p2)){ /] fal se
System.out.printin("equal);

}

e We can change this behavior by writing an equals method.

— The method should compare the state of the two objects and
return true when the objects have the same state.

Flawed equal s method

public boolean equals(Point other) {
If (x == other.x && y == other.y) {
return true;
} else {
return false;

}
}

e It should be legal to compare a Point to any object
(not just other Point objects):

[/ this should be all owed
Point p = new Point(7, 2);
if(p.equals("hello")){ /|l false

equal s and Obj ect class

public boolean equals(Cbj ect name) {
statement(s) that return a boolean value;

— The parameter to equals must be of type Object in order to
override the default version of equals .

— Object is a general type that can match any object.
— Having an Object parameter means arny object can be passed.

Another flawed version

public boolean equals(Object 0) {

return (X ==0.Xx && Yy ==0.y);

}

e Does not compile:

Point.java:36: cannot find symbol

symbol : variable x

location: class java.lang.Object

return (X == 0.X &&y== 0.Y),
N\

— Compiler: "o could be any object. Not every object has an x field."

Type-casting objects

e Solution: 7ype-cast the object parameter to a Point .

/] al nmost correct version

public boolean equals(Object 0) {
Poi nt other = (Point) o;
return X == other.x && y == other.y;,

e Casting objects is different than casting primitives.
— We're casting an Object reference into a Point reference.

— We're promising the compiler that o refers to a Point object.

Comparing different types

e When we compare Point objects to other types,

Point p = new Point(7, 2);
if(p.equals("hello")){ /'l should be false

}

— The code crashes:

Exception in thread "main"
java.lang.ClassCastException: java.lang.String
at Point.equals(Point.java:25)
at PointMain.main(PointMain.java:25)

— The culprit is the line with the type-cast:

public boolean equals(Object 0) {
Point other = (Point) o;

The i nst anceof keyword

asks whether a variable refers to an object of a given type

variable instanceof type

— The above is an expression with a boolean result.

String s = "hello";
Point p = new Point();

if(s Instanceof Point){

}

expression result
s instanceof String true
s instanceof Object true
s instanceof Point false
p instanceof Point true
p instanceof Object true
p instanceof String false

null instanceof String false

10

Final equal s method

/'l Returns whether o refers to a Point object wth
/] the same (x, y) coordinates as this Point object.
public boolean equals(Object 0) {
| f (o I nstanceof Point) {
[/ ol1s a Point; cast and conpare it
Point other = (Point) o;
return x == other.x && y == other.y;
} else {
return false; // not a Point; cannot be equal

}

11

Polymorphism

o polymorphism: Ability for the same code to be used with
different types of objects and behave differently with each.

— System.out.printin can print any type of object.
e Each one displays in its own way on the console.

— A Scanner can read data from any kind of InputStream

— Every kind of OutputStream can write data, though they might
write this to different kinds of sources.

12

Coding with polymorphism

e We can use polymorphism with classes like OutputStream
— Recall methods common to all OutputStream s:

Method Description
wri te(int b) writes a byte
cl ose() stops writing (also flushes)
flush() forces any writes in buffers to be written

— Recall part of the inheritance hierarchy for OutputStream

OutputStream

A
| |

FilterOutputStream FileOutputStream

T

PrintStream

13

Coding with polymorphism

e A variable of type T can refer to an object of any subclass of T.

OutputStream out = new PrintStream(new File("foo.txt ");
OutputStream out2 = new FileOutputStream("foo.txt");

— You can call any methods from OutputStream on out .

— You can not call methods specific to PrintStream (printin).
e But how would we call those methods on out if we wanted to?

e When a method is called on out , it behaves as a
PrintStream

out.write(0); [/ wites a 0 byte to foo.txt
out.close(); [/ closes the streamto foo.txt

14

Coding with polymorphism

e Some more polymorphism examples with OutputStream

OutputStream out = new PrintStream(new File("foo.txt"

out.write(0); [/
out.printin("hello"); [/
((PrintStream) out).printin("hello");)
out.close();)

OutputStream out2 = new FileOutputStream("foo.txt");
out2.printin("hello");)
((PrintStream) out2).printin("hello");)

);
ok

conpi l er error
ok
ok

conpi ler error
runti ne error

15

Inheritance mystery

e 4-5 classes with inheritance relationships are shown.

e A client program calls methods on objects of each class.
— Some questions involve type-casting.
— Some lines of code are illegal and produce errors.

e You must read the code and determine its output or errors.
— For output, you must be precise

— For errors, you need only say that an error occurred (not identify
what kind of error occurred)

e We always place such a question on our final exams!

16

Inheritance mystery

e Steps to solving inheritance mystery:

1. Look at the variable type (if there is a cast, look at the casted
variable type). If the variable type does not have the requested
method the compiler will report an error.

2. If there was a cast, make sure the casted variable type is
compatible with the object type (i.e. ensure the object type is a

subclass of the variable type). If they are not compatible, a
runtime error (ClassCastException) will occur.

3. Execute the method in question, behaving like the object type (the
variable type and casted variable type no longer matter at all)

17

e Assume that the following classes have been declared:

public class Snow {
public void method2() {
\ System.out.printin("Snow 2");

public void method3() {
\ System.out.printin("Snow 3");

}

public class Rain extends Snow {
public void method1() {
\ System.out.printin("Rain 1");

public void method2() {
\ System.out.printin("Rain 2");

public class Sleet extends Snow {
public void method2() {
System.out.printin("Sleet 2");
super.method?2();
method3();

}

public void method3() {
\ System.out.printin("Sleet 3");

}

public class Fog extends Sleet {
public void method1() {
System.out.printin("Fog 1");
}

public void method3() {
\ System.out.printin("Fog 3");

19

What happens when the following examples are executed?

« Example 1:

Snow varl = new Sleet();
varl.method2();

e Example 2:

Snow var2 = new Rain();
var2.methodl();

e Example 3:

Snow var3 = new Rain();
((Sleet) var3).method3();

20

Technique 1: diagram

e Diagram the classes from top (superclass) to bottom.

Snow
method2
method3
Rain Sleet
method1 method?2
method?2 method3
(method3) T
Fog
method1
(method?2)
method3

21

Technique 2: table

method Show Rain Sleet Fog
methodl Rain 1 Fog 1
method2 |Snow 2 Rain 2 Sleet 2 Sleet 2
Snow 2 Snow 2
met hod3() met hod3()
method3 | Snow 3 Snow 3 Sleet 3 Fog 3

Italics - inherited behavior
Bold - dynamic method call

22

e Example:

Snow varl = new Sleet ();
varl.method2();

e Output:

Sleet 2
Snow 2
Sleet 3

variable
Snow
method?2
method3
object
Rain Sleet
method1 method2
method?2 method3
(method3) T
Fog
method1
(method?2)
method3

23

e Example:

variable
Snow var2 =new Rain (); Snow
var2.methodl(); S
method3
. bject t
e Output: objec
Rain Sleet
None! method1 method2
) method2 method3
There is an error, (method3)
because Snow does not T
have a method1 . Fog
method1
(method?2)

method3

24

e Example:

Snow var3 = new

e Output:

None!

There is an error
because a Rain is
not a Sleet .

Rain ();
((Sleet)var3).method2();

object

Snow
method?2
method3
variable
Rain Sleet
method1 method2
method?2 method3
(method3) T
Fog
method1
(method?2)
method3

25

