
CSE 143
Lecture 19

Binary Search Trees

read 17.3

slides created by Marty Stepp

http://www.cs.washington.edu/143/

2

Exercise

• Add a method named printSideways to the IntTree class

that prints the tree in a sideways indented format, with right
nodes above roots above left nodes, with each level 4 spaces
more indented than the one above it.

– Example: Output from the tree below:

1911

146

9

7

overall root

19

14

11

9

7

6

3

Exercise solution

// Prints the tree in a sideways indented format.
public void printSideways() {

printSideways(overallRoot, "");
}

private void printSideways(IntTreeNode root,
String indent) {

if (root != null) {
printSideways(root.right, indent + " ");
System.out.println(indent + root.data);
printSideways(root.left, indent + " ");

}
}

4

Binary search trees

• binary search tree ("BST"): a binary tree that is either:
– empty (null), or

– a root node R such that:

• every element of R's left subtree contains data "less than" R's data,

• every element of R's right subtree contains data "greater than" R's,

• R's left and right subtrees are also binary search trees.

• BSTs store their elements in
sorted order, which is helpful
for searching/sorting tasks.

9160

8729

55

42-3

overall root

5

Exercise

• Which of the trees shown are legal binary search trees?

xk

qg

m

e

b 1810

115

8

4

2 7

20

18

42

-7-1

-5

21.38.1

9.61.9

7.2

6

Searching a BST

• Describe an algorithm for searching the tree below for the
value 31.

• Then search for the value 6.

• What is the maximum
number of nodes you
would need to examine
to perform any search?

12

18

7

4 15

overall root

-2 1613

35

31

22 58

19 8740

7

Exercise

• Add a method contains to the IntTree class that searches
the tree for a given integer, returning true if it is found in the
tree and false if not. Assume that the elements of the tree

constitute a legal binary search tree.

– If an IntTree variable tree referred to the tree below, the

following calls would have the following results:

•tree.contains(29) → true

•tree.contains(55) → true

•tree.contains(63) → false

•tree.contains(35) → false

9160

8729

55

42-3

overall root

8

Exercise solution

// Returns whether this tree contains the given int eger.
public boolean contains(int value) {

return contains(overallRoot, value);
}

private boolean contains(IntTreeNode root, int value) {
if (root == null) {

return false;
} else if (root.data == value) {

return true;
} else if (root.data > value) {

return contains(root.left, value);
} else { // root.data < value

return contains(root.right, value);
}

}

9

Adding to a BST

• Suppose we want to add the value 14 to the BST below.

– Where should the new node be added?

• Where would we add the value 3?

• Where would we add 7?

• If the tree is empty, where
should a new value be added?

• What is the general algorithm?

1810

115

8

4

2 7

20

18

10

Adding exercise

• Draw what a binary search tree would look like if the following
values were added to an initially empty tree in this order:

50
20
75
98
80
31
150
39
23
11
77

50

20 75

80

9811

39

31

15023

77

11

Exercise

• Add a method add to the IntTree class that adds a given

integer value to the tree. Assume that the elements of the
IntTree constitute a legal binary search tree, and add the

new value in the appropriate place to maintain ordering.

•tree.add(49) ;

9160

8729

55

42-3

overall root

49

12

An incorrect solution

// Adds the given value to this BST in sorted order .
public void add(int value) {

add(overallRoot, value);
}

private void add(IntTreeNode root, int value) {
if (root == null) {

root = new IntTreeNode(value);
} else if (root.data > value) {

add(root.left, value);
} else if (root.data < value) {

add(root.right, value);
}
// else root.data == value;
// a duplicate (don't add)

}

• Why doesn't this solution work?

9160

8729

55

42-3

overallRoot

13

The problem

• Much like with linked lists, if we just modify what a local
variable refers to, it won't change the collection.

private void add(IntTreeNode root, int value) {
if (root == null) {

root = new IntTreeNode(value);

– In the linked list case, how did we
correct this problem? How did we
actually modify the list? 9160

8729

55

42-3

overallRoot

49root

14

x = change(x);

• All String object methods that modify a String actually return a
new String object.

– If we want to modify a string variable, we must re-assign it.

String s = "lil bow wow";

s.toUpperCase();

System.out.println(s); // lil bow wow

s = s.toUpperCase();

System.out.println(s); // LIL BOW WOW

– We call this general algorithmic pattern x = change(x);

– We will use this approach when writing methods that modify the
structure of a binary tree.

15

Applying x = change(x)

• Methods that modify a tree should have the following pattern:

– input (parameter): old state of the node

– output (return): new state of the node

• In order to actually change the tree, you must reassign:

root = change(root, parameters);
root.left = change(root.left, parameters);
root.right = change(root.right, parameters);

your
method

node
before

node
after

parameter return

16

A correct solution

// Adds the given value to this BST in sorted order .
public void add(int value) {

overallRoot = add(overallRoot, value);
}

private IntTreeNode add(IntTreeNode root, int value) {
if (root == null) {

root = new IntTreeNode(value);
} else if (root.data > value) {

root.left = add(root.left, value);
} else if (root.data < value) {

root.right = add(root.right, value);
} // else a duplicate

return root;
}

• Think about the case when root is a leaf...
9160

8729

55

42-3

overallRoot

17

Searching BSTs

• The BSTs below contain the same elements.

– What orders are "better" for searching?

4

7

11

6

overall root

19

14

9

1911

146

9

74

overall root

14

19

4

11

overall root

9

7

6

18

Trees and balance

• balanced tree: One whose subtrees differ in height by at
most 1 and are themselves balanced.

– A balanced tree of N nodes has a height of ~ log2 N.

– A very unbalanced tree can have a height close to N.

– The runtime of adding to / searching a
BST is closely related to height.

– Some tree collections (e.g. TreeSet)

contain code to balance themselves
as new nodes are added.

19

7

146

9

84

overall root

height = 4
(balanced)

