
CSE 143
Lecture 18

Binary Trees

read 17.1 - 17.2

slides created by Marty Stepp

http://www.cs.washington.edu/143/

2

Question

• Say you want to write a collection optimized for these tasks:

– storing/accessing elements in sorted order

– adding/removing elements in order

– searching the collection for a given element

• What implementation would work well?

– An array?

– A sorted array?

– A linked list?

4924117value

3210index

front 7 11 24 49

3

Runtime

• How long does it take to do the following:

– add N elements?

– search for an element N times in a list of size N?

– (add an element, then search for an element) N times?

access all
in order

sorted array

search

remove

add

operation linked listunsorted array

4

Creative use of arrays/links

• Some data structures (such as hash tables and binary trees)
are built around clever ways of using arrays and/or linked lists.

– What array order can help us find values quickly later?

– What if our linked list nodes each had more than one link?

0

3

24

4

0

5

0

6

7

7

0

8

490110value

9210index

front back24 49117

5

Trees

• tree: A directed, acyclic structure of linked nodes.

– directed : Has one-way links between nodes.

– acyclic : No path wraps back around to the same node twice.

– binary tree: Each node has at most two children.

• A tree can be defined as either:

– empty (null), or

– a root node that contains:

• data,

• a left subtree, and

• a right subtree.

– (The left and/or right
subtree could be empty.)

76

32

1

54

root

6

Trees in computer science

• folders/files on a computer

• family genealogy; organizational charts

• AI: decision trees

• compilers: parse tree

– a = (b + c) * d;

• cell phone T9

d+

*a

=

cb

7

Programming with trees

• Trees are a mixture of linked lists and recursion

– considered very elegant (perhaps beautiful!) by CSE nerds

– difficult for novices to master

• Common student comment #1:

– "My code does not work, and I don't know why."

• Common student comment #2:

– "My code works, and I don't know why."

8

Terminology

• node: an object containing a data value and left/right children

• root: topmost node of a tree

• leaf: a node that has no children

• branch: any internal node; neither the root nor a leaf

• parent: a node that refers to this one

• child: a node that this node refers to

• sibling: a node with a common

76

32

1

54

root

9

Terminology 2

• subtree: the tree of nodes reachable to the left/right from the
current node

• height: length of the longest path from the root to any node

• level: the length of the
path from a root to
a given node

• full tree: one
where every branch
has 2 children

76

32

1

54

root
height = 3

level 1

level 2

level 3

10

A tree node for integers

• A basic tree node object stores data and references to left/right

• Multiple nodes can be linked together into a larger tree

– Would it be useful to have a ternary tree?

left

42

rightdata

left

42

rightdata

left

59

rightdata left

27

rightdata

left

86

rightdata

11

IntTreeNode class

// An IntTreeNode object is one node in a binary tree of ints.
public class IntTreeNode {

public int data; // data stored at this node
public IntTreeNode left; // reference to left subtree
public IntTreeNode right; // reference to right subtree

// Constructs a leaf node with the given data.
public IntTreeNode(int data) {

this(data, null, null);
}

// Constructs a branch node with the given data and links.
public IntTreeNode(int data, IntTreeNode left,

IntTreeNode right) {
this.data = data;
this.left = left;
this.right = right;

}
}

12

IntTree class

// An IntTree object represents an entire binary tree of ints.
public class IntTree {

private IntTreeNode overallRoot; // null for an empty tree

methods
}

– Client code talks to the IntTree,
not to the node objects inside it

– Methods of the IntTree create

and manipulate the nodes,
their data and links between them 76

32

1

54

overallRoot

13

IntTree constructor

• Assume we have the following constructors:

public IntTree(IntTreeNode overallRoot)
public IntTree(int height)

– The 2nd constructor will create a tree and fill it with nodes with
random data values from 1-100 until it is full at the given height.

IntTree tree = new IntTree(3);

4081

941

17

629

overallRoot

14

Exercise

• Add a method print to the IntTree class that prints the

elements of the tree, separated by spaces.

– A node's left subtree should be printed before it, and its right
subtree should be printed after it.

– Example: tree.print();

29 41 6 17 81 9 40

4081

941

17

629

overallRoot

15

Exercise solution

// An IntTree object represents an entire binary tree of ints.
public class IntTree {

private IntTreeNode overallRoot; // null for an empty tree
...

public void print() {
print(overallRoot);
System.out.println(); // end the line of output

}

private void print(IntTreeNode root) {
// (base case is implicitly to do nothing on null)
if (root != null) {

// recursive case: print left, center, right
print(overallRoot.left);
System.out.print(overallRoot.data + " ");
print(overallRoot.right);

}
}

}

16

Template for tree methods

public class IntTree {
private IntTreeNode overallRoot;
...

public type name(parameters) {
name(overallRoot, parameters);

}

private type name(IntTreeNode root, parameters) {
...

}
}

• Tree methods are often implemented recursively
– with a public/private pair
– the private version accepts the root node to process

17

Traversals

• traversal: An examination of the elements of a tree.

– A pattern used in many tree algorithms and methods

• Common orderings for traversals:

– pre-order: process root node, then its left/right subtrees

– in-order: process left subtree, then root node, then right

– post-order: process left/right subtrees, then root node

4081

941

17

629

overallRoot

18

Traversal example

• pre-order: 17 41 29 6 81 40

• in-order: 29 41 6 17 81 9 40

• post-order: 29 6 41 81 40 9 17

4081

941

17

629

overallRoot

19

Traversal trick

• To quickly generate a traversal:

– Trace a path around the tree.

– As you pass a node on the
proper side, process it.

• pre-order: left side

• in-order: bottom

• post-order: right side

• pre-order: 17 41 29 6 81 40

• in-order: 29 41 6 17 81 9 40

• post-order: 29 6 41 81 40 9 17

4081

941

17

629

overallRoot

20

• Give pre-, in-, and post-order traversals for the following tree:

– pre: 42 15 27 48 9 86 12 5 3 39

– in: 15 48 27 42 86 5 12 9 3 39

– post: 48 27 15 5 12 86 39 3 42

Exercise

386

915

42

27

48

overallRoot

12 39

5

