CSE 143
Lecture 11

More Linked Lists

reading: 16.2 - 16.3

slides created by Marty Stepp
http://www.cs.washington.edu/143/

Conceptual questions

e \What is the difference between a LinkedIntList and a
ListNode ?

e What is the difference between an empty list and a null list?
— How do you create each one?

e Why are the fields of ListNode public? Is this bad style?

e \What effect does this code have on a LinkedIntList ?

ListNode current = front;
current = null;

Conceptual answers

o A list consists of 0 to many node objects.
— Each node holds a single data element value.

e null list: LinkedIntList list = null:
empty list: LinkedintList list = new LinkedIntList();

e It's okay that the node fields are public, because client code
never directly interacts with ListNode objects.

e The code doesn't change the list.
You can change a list only in one of the following two ways:

— Modify its front field value.
— Modify the next reference of a node in the list.

Linked vs. array lists

e We have implemented the following two collection classes:

— ArrayintList

— LinkedIntList

front ——

index| 0 (1] 2| 3
value |42 (-3(117| 9
data | next data | next
42 —+—| -3 —

data

next

— They have similar behavior.
We should be able to treat them the same way in client code.

17

data

next

0o]

An | nt Li st interface

/|l Represents a |ist of Integers.
public interface IntList {
public void add(int value);
public void add(int index, int value);
public int get(int index);
public int indexOf(int value);
public boolean iIsEmpty();
public void remove(int index);
public void set(int index, int value);
public int size();

public class ArraylIntList | mpl enents I ntList { ..
public class LinkedIntList | npl enents IntList { ..

e Write a method addSorted that accepts an integer value as a
parameter and adds that value to a sorted list in sorted order.

— Before addSorted(17)

——

; _ data | next data | next data | next
ront = >
size = 4 $ N - /
element 0 element 1 element 2
— After addSorted(17)
p _ data | next data | next data | next
ront = >
. -4 8 17
size =
element 0 element 1 element 2

data

next

2 |]

element 3

The common case

e Adding to the middle of a list:

addSorted(17)
; _ data | next data | next data | next
ront = >
size = 3 = LS T[22 /
element 0 element 1 element 2

— Which references must be changed?
— What sort of loop do we need?
— When should the loop stop?

First attempt

e An incorrect loop:

ListNode current = front;
while (current.data < value) {

current = current.next;
} current

|

e ont data | next data | next data | next

size = 3 = (I T 22 /

element 0 element 1 element 2

e What is wrong with this code?
— The loop stops too late to affect the list in the right way.

Key idea: peeking ahead

e An incorrect loop:

ListNode current = front;
while (current
current = current.next;

. hext .data < value) {

current

|

data

next

}
font = : data | next
-4
size = 3
element 0

8

——

element 1

— This time the loop stops in the right place.

data

next

2 |]

element 2

Another case to handle

e Adding to the end of a list:

addSorted(42)
_ data | next data | next data | next
front = >
4 > ——
size = 3 E 22 /
element 0 element 1 element 2
Exception in thread "nain": java.lang. Nul | Poi nt er Excepti on

— Why does our code crash?
— What can we change to fix this case?

10

Multiple loop tests

e A correction to our loop:
ListNode current = front;

while (current.next !'= null &&
current.next.data < value) {
current = current.next; current

} |
cont data | next data | next data | next

size = 3 = (I T 22 /

element 0 element 1 element 2

— We must check for a next of null before we check its .data

11

Third case to handle

e Adding to the front of a list:
addSorted(-10)

_ data | next data | next data | next
front = >
4 > ——
size = 3 8 22 /
element 0 element 1 element 2

— What will our code do in this case?
— What can we change to fix it?

12

Handling the front

e Another correction to our code:

| f (value <= front.data) {
/] 1nsert at front of |1ist
front = new ListNode(value, front);

} else {
[/ 1nsert in mddle of |Ist
ListNode current = front;
while (current.next != null &&

current.next.data < value) {
current = current.next;

}

— Does our code now handle every possible case?

13

Fourth case to handle

e Adding to (the front of) an empty list:

addSorted(42)
front =
size = 3

— What will our code do in this case?
— What can we change to fix it?

14

Final version of code

[/ Adds given value to list in sorted order.
// Precondition: Existing list I1s sorted
public void addSorted(int value) {
f(front == null || value <= front.data) {
/[l 1nsert at front of |Ist
front = new ListNode(value, front);
} else {
[/ 1nsert in mddle of |ist
ListNode current = front;
while (current.next !=null &&
current.next.data < value) {
current = current.next;

15

